Skip to main content
Log in

The hydrolysis of phosphatidylcholine by an immobilized lipase: Optimization of hydrolysis in organic solvents

  • Published:
Journal of the American Oil Chemists’ Society

Abstract

The ability of a commercial immobilized lipase preparation (Lipozyme) to hydrolyze the fatty acyl ester bonds of soybean phosphatidylcholine in organic media was investigated. Response surface methodology, based on a Modified Central Composite design, was employed to examine the effects on hydrolysis of solvent polarity, water, pH, duration and temperature of incubation, and the amounts of substrate and catalyst. A second-order regression model was developed, which allows evaluation of the effects of these parameters, alone or in combination. Hydrolysis increased in a relatively straightforward manner in response to increases in incubation time and the amount of catalyst and was approximately constant over the range of substrate amounts studied. Solvent polarity had a profound effect on the degree of hydrolysis, and the qualitative and quantitative degrees of this effect were dependent upon the values of the other parameters studied. Conditions were identified where enzyme activity was strong in either nonpolar or polar solvents, with activity increasing as the polarity of the medium increased. Enzyme activity was minimum at about 37°C, increasing below and above this temperature. Activity was not affected by the presence of acid or base in the reactions. Increasing amounts of water stimulated enzyme activity in solvents more polar than hexane, while in less polar solvents water inhibited activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laboureur, P., and M. Labrousse,Compt. Rend. 259:4394 (1964).

    CAS  Google Scholar 

  2. DeHaas, G.H., L. Sarda and J. Roger,Biochim. Biophys. Acta 106:638 (1965).

    CAS  Google Scholar 

  3. Slotboom, A.J., G.H. De Haas, P.P.M. Bonsen, G.J. Burbach-Westerhuis and L.L.M. Van Deenen,Chem. Phys. Lipids 4:15 (1970).

    Article  CAS  Google Scholar 

  4. Shirai, K., R.L. Barnhart and R.L. Jackson,Biochem. Biophys. Res. Commun. 100:591 (1981).

    Article  CAS  Google Scholar 

  5. Van Oort, M.G., A.M.Th.J. Deveer, R. Dijkman, M.L. Tjeenk, H.M. Verheij, G.H. De Haas, E. Wenzig and F. Gotz,Biochemistry 28:9278 (1989).

    Article  Google Scholar 

  6. Slotboom, A.J., H.M. Verheij and G.H. De Haas,Chem. Phys. Lipids 11:295 (1973).

    Article  CAS  Google Scholar 

  7. Jensen, R.G., S.A. Gerrior, M.M. Hagerty and K.E. McMahon,J. Am. Oil Chem. Soc. 55:422 (1978).

    CAS  Google Scholar 

  8. Cox, J.W.,Fed. Proc. 36:852 (1977).

    Google Scholar 

  9. Hirashima, Y., A.A. Farooqui, E.J. Murphy and L.A. Horrocks,Lipids 25:344 (1990).

    CAS  Google Scholar 

  10. Yoshimoto, T., M. Nakata, S. Yamaguchi, T. Funada, Y. Saito and Y. Inada,Biotechnol. Lett. 8:771 (1986).

    Article  CAS  Google Scholar 

  11. Svensson, I., P. Adlercreutz and B. Mattiasson,Appl. Microbiol. Biotechnol. 33:255 (1990).

    Article  CAS  Google Scholar 

  12. Yagi, T., T. Nakanishi, Y. Yoshizawa and F. Fukui,J. Ferment. Bioeng. 69:23 (1990).

    Article  CAS  Google Scholar 

  13. Totani, Y., and S. Hara,J. Am. Oil Chem. Soc. 68:848 (1991).

    CAS  Google Scholar 

  14. Posorske, L.H., G.K. LeFebvre, C.A. Miller, T.T. Hansen and B.L. Glenvig, Ibid.:922 (1988).

    CAS  Google Scholar 

  15. Miller, C., H. Austin, L. Posorske and J. Gonzlez, Ibid.:927 (1988).

    CAS  Google Scholar 

  16. Jensen, B.F., and P. Eigtved,Food Biotechnol. 4:699 (1990).

    Article  CAS  Google Scholar 

  17. Laane, C., S. Boeren, K. Vos and C. Veeger,Biotechnol. Bioengr. 30:81 (1987).

    Article  CAS  Google Scholar 

  18. Box, G.E.P., W.G. Hunter and J.S. Hunter,Statistics for Experimenters, Wiley, New York, 1978.

    Google Scholar 

  19. Schuch, R., and K.D. Mukherjee,Agric. Food Chem. 35:1005 (1987).

    Article  CAS  Google Scholar 

  20. Brockerhoff, H., and R.G. Jensen,Lipolytic Enzymes, Academic Press, New York, 1974.

    Google Scholar 

  21. Borgstrom, B., and H.L. Brockman,Lipases, Elsevier, New York, 1984.

    Google Scholar 

  22. Klibanov, A.M.,Chemtech. 16:354 (1986).

    CAS  Google Scholar 

  23. Dordick, J.S., inApplied Biocatalysis, Vol. 1, edited by H.W. Blanch, and D.S. Clark, Marcel Dekker, Inc., New York, 1991, pp. 1–51.

    Google Scholar 

  24. Na, A., C. Eriksson, S.-G. Eriksson, E. Osterberg and K. Holmberg,J. Am. Oil Chem. Soc. 67:766 (1990).

    CAS  Google Scholar 

  25. Zaks, A., and A.M. Klibanov,Proc. Natl. Acad. Sci. USA 82:3192 (1985).

    Article  CAS  Google Scholar 

  26. Zaks, A., and A.M. Klibanov,J. Biol. Chem. 263:3194 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Haas, M.J., Cichowicz, D.J., Phillips, J. et al. The hydrolysis of phosphatidylcholine by an immobilized lipase: Optimization of hydrolysis in organic solvents. J Am Oil Chem Soc 70, 111–117 (1993). https://doi.org/10.1007/BF02542611

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02542611

Key words

Navigation