Some compositional properties of camelina (camelina sativa L. Crantz) seeds and oils

  • John T. Budin
  • William M. Breene
  • Daniel H. Putnam


Fatty acid profiles (FAP), tocopherol (T), and tocotrienol (T3) contents, total lipid contents, and trypsin inhibitor activity were quantitated from thirteen accessions of camelina (Camelina sativa L. Crantz), a little-known oilseed. Camelina seeds of ten accessions were also assayed for ß-glucans. FAP (%) of camelina oils were: oleic (14.1 to 19.5), linoleic (18.8 to 24.0), linolenic (27.0 to 34.7), eicosenoic (12.0 to 14.9), erucic (0.0 to 4.0), all others (11.8 to 17.4). Camelina oil T and T3 contents (mg/100 g) were: αT (0.66 to 2.38), ßT (0.38 to 1.45), γT/ßt3 (4.37 to 18.68), δT (0.00 to 0.48), γT3 (0.00 to 0.79), γT3 (0.00), γT3 (0.00). Total tocols were higher in camelina than in canola, crambe, flax, soybean, and sunflower, with γT/ßT3 constituting 82% of total tocols. The oil content of camelina seeds ranged from 29.9 to 38.3%. Camelina seeds did not contain ß-glucans. Trypsin units inhibited ranged from 12 to 28 compared to 111 for raw soybean.

Key words

Camelina false flax fatty acid ß-glucan tocopherol tocotrienol trypsin inhibitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knorzer, K.H.,Berichte der Deutschen Gesellschaft.91:187 (1978).Google Scholar
  2. 2.
    Robinson, R.G., Minnesota Agricultural Experiment Station Bulletin 579-1987, (AD-SB-3275), St. Paul, 1987, pp 1–12.Google Scholar
  3. 3.
    Putnam, D.H., J.T. Budin, L.A. Field and W.M. Breene, inNew Crops, edited by J. Janick, and J. Simon, John Wiley and Sons, New York, 1993, pp. 314–322.Google Scholar
  4. 4.
    Official Methods of Analysis of the Association of Official Analytical Chemists, 14th edn., Association of Official Analytical Chemists, Arlington, 1984.Google Scholar
  5. 5.
    Einig, R.G., and R.G. Ackman,J. Am. Oil Chem. Soc. 64:499 (1987).Google Scholar
  6. 6.
    Pocklington, W.D., and A. Dieffenbacher,Pure and Appl. Chem. 60:877 (1987).Google Scholar
  7. 7.
    Bauernfeind, J., inVitamin E: A Comprehensive Treatise, Marcel Dekker, New York, 1980, pp. 99–167.Google Scholar
  8. 8.
    Rao, M.K.G., and E.G. Perkins,J. Agric. Food Chem. 20:240 (1972).CrossRefGoogle Scholar
  9. 9.
    Thompson, J.N., and G. Hatina,J. Liq. Chrom. 2:327 (1979).Google Scholar
  10. 10.
    Hakkarainen, R.V.J., J.T. Tyopponen and S.G. Bengtsson,J. Sci. Food Agric. 34:1029 (1983).CrossRefGoogle Scholar
  11. 11.
    Speek, A.J., J. Schrijver and W.H.P. Schreurs,J. Food Sci. 50:121 (1985).CrossRefGoogle Scholar
  12. 12.
    Approved Methods of The American Association of Cereal Chemists, The American Association of Cereal Chemists, St. Paul, 1983.Google Scholar
  13. 13.
    Liu, K., and P. Markakis,Cereal Chem. 66:415 (1989).Google Scholar
  14. 14.
    Kramer, J.K.G., and F.D. Sauer, inHigh- and Low-Erucic Rapeseed Oils, edited by J.K.G. Kramer, F.D. Sauer and W.J. Pigden, Academic Press, Toronto, 1983, pp. 413–474.Google Scholar

Copyright information

© AOCS Press 1995

Authors and Affiliations

  • John T. Budin
    • 1
  • William M. Breene
    • 1
  • Daniel H. Putnam
    • 2
  1. 1.Departments of Food Science and NutritionUniversity of MinnesotaSt. Paul
  2. 2.Agronomy and Plant GeneticsUniversity of MinnesotaSt. Paul

Personalised recommendations