Skip to main content
Log in

Airborne transmission of the rhizosphere bacteriumAzospirillum

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In controlled environments, plants inoculated withAzospirillum brasilense caused the contamination of noninoculated plants via air transmission. This was detected up to 6 m from the inoculation source. In the temperate agricultural zone studied in field experiments, localAzospirillum strains were detected year-round. Other diazotrophs showed a similar distribution pattern. It is proposed that (1) contamination fromAzospirillum-inoculated plants may occur via airborne bacteria, (2) local azospirilla and other diazotrophs have an airborne phase in temperate agricultural zones, and (3) because of the existence of an airborne phase for Gram-negative rhizosphere bacteria, inoculation presents a risk of uncontrolled airborne contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen AA (1958) New sampler for the collection, sizing, and enumeration of viable airborne particles. J Bacteriol 76: 471–484

    PubMed  CAS  Google Scholar 

  2. Balandreau J (1986) Ecological factors and adaptive processes in N2-fixing bacterial populations of the plant environment. Plant Soil 90: 73–92

    Article  Google Scholar 

  3. Bashan Y (1986) Field dispersal ofPseudomonas syringae pv.tomato, Xanthomonas campestris pv.vesicatoria andAlternaria macrospora by animals, people, birds, insects, mites, agricultural tools, aircraft, soil particles, and water resources. Can J Bot 64: 276–281

    Google Scholar 

  4. Bashan Y (1986) Migration of the rhizosphere bacteriaAzospirillum brasilense andPseudomonas fluorescens towards wheat roots in the soil. J Gen Microbiol 132: 3407–3414

    Google Scholar 

  5. Bashan Y, Levanony H (1985) An improved selection technique and medium for the isolation and enumeration ofAzospirillum brasilense. Can J Microbiol 31: 947–952

    CAS  Google Scholar 

  6. Bashan Y, Levanony H (1987) Horizontal and vertical movement ofAzospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. J Gen Microbiol 133: 3473–3480

    Google Scholar 

  7. Bashan Y, Levanony H (1989) Wheat root tips as a vector for passive vertical transfer ofAzospirillum brasilense Cd. J Gen Microbiol 135: 2899–2908

    Google Scholar 

  8. Bashan Y, Levanony H (1990) Current status ofAzospirillum inoculation technology:Azospirillum as a challenge for agriculture. Can J Microbiol 36: 591–608

    CAS  Google Scholar 

  9. Bashan Y, Levanony H, Mitiku G (1989) Changes in proton efflux of intact wheat roots induced byAzospirillum brasilense Cd. Can J Microbiol 35: 691–697

    Article  CAS  Google Scholar 

  10. Bashan Y, Ream Y, Levanony H, Sade A (1989) Nonspecific responses in plant growth, yield, and root colonization of noncereal crop plants to inoculation withAzospirillum brasilense Cd. Can J Bot 67: 1317–1324

    Google Scholar 

  11. Bashan Y, Singh M, Levanony H (1989) Contribution ofAzospirillum brasilense Cd to growth of tomato seedlings is not through nitrogen fixation. Can J Bot 67: 2429–2434

    CAS  Google Scholar 

  12. Brenner KP, Scarpino PV, Clark CS (1988) Animal viruses, coliphages, and bacteria in aerosols and wastewater at a spray irrigation site. Appl Environ Microbiol 54: 409–415

    PubMed  CAS  Google Scholar 

  13. De Coninck K, Horemans S, Randombage S, Vlassak K (1988) Occurrence and survival ofAzospirillum spp. in temperate regions. Plant Soil 110: 213–218

    Article  Google Scholar 

  14. Döbereiner J (1988) Isolation and identification of root associated diazotrophs. Plant Soil 110: 207–212

    Article  Google Scholar 

  15. Döbereiner J, Day JM (1976) Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CJ (eds) Ist International Symposium on Nitrogen Fixation, Washington State University Press, Pullman, pp 518–538

    Google Scholar 

  16. Döbereiner J, Marriel IE, Nery M (1976) Ecological distribution ofSpirillum lipoferum Beijerinck. Can J Microbiol 22: 1464–1473

    PubMed  Google Scholar 

  17. Durham OC (1944) The volumetric incidence of atmospheric allergens. II. Simultaneous measurements by volumetric and gravity slide methods. Results with ragweed pollen andAlternaria spores. J Allergy 15: 226–235

    Article  Google Scholar 

  18. Eskew DL, Focht DD, Ting IP (1977) Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmentedSpirillum lipoferum. Appl Environ Microbiol 34: 582–585

    PubMed  CAS  Google Scholar 

  19. Favilli F, Trinci F, Balloni W (1988)Azospirillum spp. ecology of some soils of the Somali republic In: Klingmüller W (ed)Azospirillum IV: Genetics, physiology, ecology, Springer-Verlag, Berlin, Heidelberg, New York, pp 223–233

    Google Scholar 

  20. Haahtela K, Wartiovaara T, Sundman V, Skujins J (1981) Root-associated N2 fixation (acetylene reduction) byEnterobacteriaceae andAzospirillum strains in cold-climate spodosols. Appl Environ Microbiol 41: 203–206

    PubMed  CAS  Google Scholar 

  21. Hardy RWF, Burns RC, Holsten RD (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5: 47–81

    Article  CAS  Google Scholar 

  22. Kosslak RM, Bohlool BB (1983) Prevalence ofAzospirillum spp. in the rhizosphere of tropical plants. Can J Microbiol 29: 649–652

    Google Scholar 

  23. Lifshitz R, Kloepper JW, Scher FM, Tipping EM, Laliberté M (1986) Nitrogen-fixing pseudomonads isolated from roots of plants grown in the Canadian high arctic. Appl Environ Microbiol 51: 251–255

    PubMed  CAS  Google Scholar 

  24. Lindberg T, Granhall U (1984) Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of temperate cereals and forage grasses. Appl Environ Microbiol 48: 683–689

    PubMed  CAS  Google Scholar 

  25. Madelin TM (1987) The effect of a surfactant in media for the enumeration, growth and identification of airborne fungi. J Appl Bacteriol 63: 47–52

    PubMed  CAS  Google Scholar 

  26. Prévost D, Bordeleau LM, Antoun H (1987) Symbiotic effectiveness of indigenous arctic rhizobia on a temperate forage legume: Sainfoin (Onobrychis viciifolia). Plant Soil 104: 63–69

    Article  Google Scholar 

  27. Rao AV, Venkateswarlu B (1982) Associative symbiosis ofAzospirillum lipoferum with dicotyledonous succulent plants of the Indian desert. Can J Microbiol 28: 778–782

    CAS  Google Scholar 

  28. Sleesman JP, Leben C (1978) Preserving phytopathogenic bacteria at −70°C or with silica gel. Plant Dis Rptr 62: 910–913

    Google Scholar 

  29. Tarrand JJ, Kreig NR, Döbereiner J (1978) A taxonomic study of theSpirillum lipoferum group, with descriptions of a new genus,Azospirillum gen. nov. and two species,Azospirillum lipoferum (Beijerinck) comb. nov. andAzospirillum brasilense sp. nov. Can J Microbiol 24: 967–980

    PubMed  CAS  Google Scholar 

  30. Tyler ME, Milam JR, Smith RL, Schank SC, Zuberer DA (1979) Isolation ofAzospirillum from diverse geographical regions. Can J Microbiol 25: 693–697

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashan, Y. Airborne transmission of the rhizosphere bacteriumAzospirillum . Microb Ecol 22, 257–269 (1991). https://doi.org/10.1007/BF02540228

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02540228

Keywords

Navigation