Skip to main content
Log in

Physiological bases of oligotrophy of microorganisms and the concept of microbial community

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Three groups of physiological processes in microorganisms are considered the physiological basis of oligotrophy: the greater substrate affinity of the oligotrophs' transport systems, efficient or “economical” metabolism, and existence of a “master reaction” or “rate-determining steps” controlling the rate of metabolism. Heterotrophic microorganisms are divided into three unequal groups according to “reaction norma.” Two groups representing the extremes are small groups with the “narrow” reaction norma, regarding the concentrations and structure of the assimilated organic compounds and variability limits of the physiological characteristics mentioned above. The third, intermediate group includes the majority of microorganisms with the “wide” reaction norma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agbanyo F, Taylor NF (1986) The active transport of 2-keto-D-glucose in vesicles prepared fromPseudomonas putida. Biochem J 228:257–262

    Google Scholar 

  2. Akagi Y, Taga N (1980) Uptake of D-glucose and L-proline by oligotrophic and heterotrophic marine bacteria. Can J Microbiol 26:454–459

    PubMed  CAS  Google Scholar 

  3. Aminov RI (1986) The kinetics of microbial growth with different ecological strategies (author's abstract of thesis). Institute Biochem and Physiol Microorg Acad Sci USSR, Peuschino on Oka (in Russian)

  4. Aminov RI, Golovlev EL (1987) The kinetics ofRhodococcus minimus growth under batch and continuous cultivation conditions (in Russian). Microbiologia 56:64–70

    CAS  Google Scholar 

  5. Bauld J, Bigford R, Staley JT (1983)Prosthecomicrobium litoralum, a new species from marine habitats. Int J Syst Bacteriol 33:613–617

    Article  Google Scholar 

  6. De Vries W, Kaptein WMC, Van der Beek EG, Stouthamer AH (1970) Molar growth yields and fermentation balances ofLactobacillus casei L 3 in batch cultures and in continuous cultures. J Gen Microbiol 63:333–345.

    PubMed  Google Scholar 

  7. Di Marco AA, Romano AH (1985) D-glucose transport system ofZymomonas mobilis. Appl Environ Microbiol 49:151–157

    Google Scholar 

  8. Dorofeyev AG, Bondarenko TF, Zvyagintsev DG, Panicov NS (1984) The kinetics of microbial growth with different ecological strategies in a dialysis culture at low specific growth rate (in Russian). Microbiologia 53:271–274

    Google Scholar 

  9. Fedorova YaV (1986) Respiration activity of the hydrogen bacteriumAlcaligenes eutrophus cell and cell-free extracts (in Russian). Microbiologia 55:728–731

    CAS  Google Scholar 

  10. Gerson U, Chet I (1981) Are allochthonous and autochthonous soil microorganisms r- and K-selected? Rev Ecol Biol Soil 18:285–289

    Google Scholar 

  11. Guzev VS, Ivanov PI (1986) Functional structure of the zymogenic part of soil microbial complex (in Russian). Izv Akad Nauk SSSR Ser Biol 5:739–746

    Google Scholar 

  12. Hirsch P, Bernhard M, Cohen SS, Ensign JS, Jannasch HW, Koch AL, Marshall KC, Matin A, Poindexter JS, Rittenberg SC, Smith DC, Veldkamp H (1979) Life under conditions of low nutrient concentrations: Group report. In: Shilo M (ed) Dahlem Konferenze Life Sciences Research Report 13. Verlag Chemie, Weinheim, pp. 357–372

    Google Scholar 

  13. Hodson RE, Carlucci AF, Azam F (1979) Glucose transport in a low nutrient marine bacterium. Abstracts 79th Annual Meeting ASM, Los Angeles, CA, p 189

  14. Höfle MG (1982) Glucose uptake ofCytophaga johnsonae studied in batch and chemostat culture. Arch Microbiol 133:289–294

    Article  Google Scholar 

  15. Horowitz A, Kriechevsky MI, Atlas RM (1983) Characteristics and diversity of subarctic marine oligotrophic, stenoheterotrophic, and euryheterotrophic bacterial populations. Can J Microbiol 29:527–535

    Article  Google Scholar 

  16. Ierusalimsky ND (1966) Principles of regulation of microorganisms' growth rate. In: Controlling biosynethesis (in Russian). Nauka (Science): 5–19

  17. Ishida Y, Kadota H (1981) Growth patterns and substrate requirements of naturally occurring obligate oligotrophs. Microb Ecol 7:123–130

    Article  CAS  Google Scholar 

  18. Ishida Y, Imai I, Kadota H (1979) Growth and activity of an aquatic bacterium in low nutrient media. Abstracts 79th Annual Meeting ASM, Los Angeles, CA, p 195

  19. Kazami T, Sumiko N, Tomofusa T (1980) Melibiose transport inE. coli. J Bacteriol 141: 1031–1036

    Google Scholar 

  20. Kusnetsov SI, Dubinina GA, Lapteva NA (1979) Biology of oligotrophic bacteria. Ann Rev Microbiol 33:377–387

    Article  Google Scholar 

  21. Lambrecht RS, Carriere JF, Collins MT (1988) A model for analyzing growth kinetics of a slowly growingMycobacterium sp. Appl Environ Microbiol 54:910–916

    PubMed  CAS  Google Scholar 

  22. Larson RJ, Pate JL (1976) Glucose transport in isolated prosthecae ofAsticcacaulis biprosthecum. J Bacteriol 126:282–293

    PubMed  CAS  Google Scholar 

  23. Mischustin EN (1982) Development teaching on cenosis of soil microorganisms (in Russian). Adv Microbiol Nauka (Science) 17:117–136

    Google Scholar 

  24. Moaledj K, Overbeck J (1980) Studies on uptake kinetics of oligocarbophilic bacteria. Arch Hydrobiol 89:303–312

    CAS  Google Scholar 

  25. Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  26. Nikitin DI (1985) Biology of oligotrophous bacteria (author's abstract of thesis for doctorate in biological sciences). Institute Microbiol Acad Sci USSR, Moscow (in Russian)

    Google Scholar 

  27. Okorokov LA, Baryschnikova LM, Mjasoedova NM (1985) Transport of glucose and fructose inRhodococcus minimus in batch culture (in Russian). Microbiologia 54:778–781

    CAS  Google Scholar 

  28. Ounine K, Petitdemange HRG, Gay R (1985) Regulation and butanol inhibition of D-xylose and D-glucose uptake inClostridium acetobutylicum. Appl Environ Microbiol 49:874–878

    PubMed  CAS  Google Scholar 

  29. Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597

    Article  Google Scholar 

  30. Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell Scientific Publications, Oxford, London

    Google Scholar 

  31. Poindexter JS (1981) Oligotrophy. Feast and famine existence. Adv Microbiol Ecol 5:63

    CAS  Google Scholar 

  32. Rand JB, Tatum EL (1980) Fructose transport inNeurospora crassa. J Bacteriol 142:763–767

    PubMed  CAS  Google Scholar 

  33. Rieger M, Käppeli O, Fiecher A (1980) The respiratory capacity ofSaccharomyces cerevisiae. Curr Dev Yeast Res Proc 5th Int. Symp Yeast. Stewart G.G., Russell I. (eds). Pergamon Press, Toronto, Oxford, 1981, pp 369–373

    Google Scholar 

  34. Righelato RC, Trinci APJ, Pirt SJ, Peat A (1968) The influence of maintenance energy and growth rate on the metabolic activity, morphology and conidiation ofPenicillum chrysogenum. J Gen Microbiol 50:399–412

    PubMed  CAS  Google Scholar 

  35. Roberts S, Paden CA, Greenberg EP (1984) Uptake of D-xylose and D-glucose bySpirochaeta aurantia. J Bacteriol 159:427–428

    PubMed  CAS  Google Scholar 

  36. Ruklisch MP (1987) Kinetics characteristics of transport of glucose inBrevibacterium flavum (in Russian). Microbiologia 56:21–26

    Google Scholar 

  37. Semenov AM (1986) The respiration activity of oligotrophous prosthecate bacteria (in Russian). Microbiologia 55:929–933

    CAS  Google Scholar 

  38. Semenov AM (1987) Characteristics of soil prosthecobacteria. Proc of the 9th Int Symp on Soil Biol and Conserv of the Biosphere vol. 2. Szegi J (ed) Copyright Acad Kiado, Budapest, pp 697–702

    Google Scholar 

  39. Semenov AM (1987) Morphophysiological characteristic of polyprosthecate bacteria (author's abstract of thesis) Institute Microbiol Acad Sci USSR, Moscow (in Russian)

    Google Scholar 

  40. Semenov AM, Hanzlikova A, Jandera A (1989) Quantitative estimation of poly-3-hydroxybutyric acid in some oligotrophic polyprosthecate bacteria. Folia Microbiol 34:267–270

    CAS  Google Scholar 

  41. Semenov AM, Hanzlikova A, Tenov N (1989) Accumulation of poly-3-hydroxybutyric acid in some oligotrophic polyprosthecate bacteria (in Russian). Microbiologia 58:923–926

    CAS  Google Scholar 

  42. Semenov AM, Okorokov LA, Vasilieva ZV (1986) Discovery of extremely high affinity for substrate by prosthecobacteria (in Russian). Proc Acad Sci USSR 291:225–227

    CAS  Google Scholar 

  43. Severina LO, Pimenov NV, Plakunov VK (1985) A study of the transport of glucose-6-phosphate in some extreme halophiles (in Russian). Microbiologia 54:5–10

    CAS  Google Scholar 

  44. Silley P, Armstrong DG (1984) Changes in metabolism of the rumen bacteriumStreptococcus bovis H13/1 resulting from alteration in dilution rate and glucose supply per unit time. J Appl Bacteriol 57:345–353

    PubMed  CAS  Google Scholar 

  45. Spencer-Martins I, Uden van N (1985) Inactivation of active glucose transport inCandida wickerhamii is triggered by exocellular glucose. FEMS Microbiol Lett 28:277–279

    Article  CAS  Google Scholar 

  46. Stepanovich TV (1985) Physiological and biochemical peculiarities of oligotrophic bacteria (author's abstract of thesis). Inst Microbiol Acad Sci USSR, Moscow, (in Russian)

    Google Scholar 

  47. Tamm E, Pate JL (1985) Amino acid transport by prosthecae ofAsticcacaulis biprosthecum. Evidence for a broad-range transport system. J Gen Microbiol 131:2687–2699

    Google Scholar 

  48. Thompson J, Chassy BM (1981) Uptake and metabolism of sucrose byStreptococcus lactis. J Bacteriol 147:543–551

    PubMed  CAS  Google Scholar 

  49. Vasilieva LV, Semenov AM (1986) Prosthecobacteria of theStella genus and description of a newStella vacuolata species (in Russian). Izv An USSR Ser Biol 4:534–540

    Google Scholar 

  50. Watson TG (1970) Effects of sodium chloride on steady-state growth and metabolism ofSaccharomyces cerevisiae. J Gen Microbiol 64:91–99

    PubMed  CAS  Google Scholar 

  51. Williams ST (1985) Oligotrophy in soil: Fact or fiction? In: Fletcher M, Floodgate GD (eds) Bacteria in their natural environments. Published for the Soc Gen Microb by Acad Press Harcourt Brace Jovanovich, London, Orlando, pp 81–110

    Google Scholar 

  52. Winogradsky SN (1952) Microbiology of soil (in Russian). Acad Sci USSR, Moscow

    Google Scholar 

  53. Whang K, Hattori T (1988) Oligotrophic bacteria from Rendzina forest soil. Antonie van Leeuwenhoek 54:19–36

    Article  PubMed  CAS  Google Scholar 

  54. Witzel KP, Moaledj K, Overbeck HI (1982) A numerical taxonomic comparison of oligotrophic and saprophytic bacteria isolated from Lake Plussee. Arch Hydrobiol 95:507–520

    Google Scholar 

  55. Zavarzin GA (1970) The notion of microflora of dispersion in the carbon cycle (in Russian). J Gen Biol 31:386–393

    Google Scholar 

  56. Zavarzin GA (1976) Extensive microbiology (in Russian). Izv Akad Nauk SSSR Ser Biol 1: 121–134

    Google Scholar 

  57. Zavarzin GA (1984) Bacteria and the composition of the atmosphere (in Russian). Nauka (Science)

  58. Zavarzin GA (1989) Microbial community in the past and present (in Russian). Microbiol J 51:3–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenov, A.M. Physiological bases of oligotrophy of microorganisms and the concept of microbial community. Microb Ecol 22, 239–247 (1991). https://doi.org/10.1007/BF02540226

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02540226

Keywords

Navigation