Skip to main content
Log in

Stopped-flow chamber and image analysis system for quantitative characterization of bacterial population migration: Motility and chemotaxis ofEscherichia coli K12 to fucose

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The directed movement of a bacterial population in response to a chemical gradient is known as bacterial chemotaxis and plays a critical role in the distribution and dynamic interaction of bacterial populations. A quantitative characterization of the chemotactic response in terms of intrinsic cell properties is necessary for making reliable predictions about the migratory behavior of bacterial populations within the environment.

The design of the stopped-flow diffusion chamber (SFDC) provides a well-characterized chemical gradient and reliable method for measuring bacterial migration behavior. During flow through the chamber a step change in the chemical concentration is imposed on a uniform suspension of bacteria. Once flow is stopped a transient chemical gradient forms due to diffusion; bacteria respond by forming a band of high cell density that travels toward higher concentrations of the attractant. Sequential observations of bacterial spatial distributions over a period of about ten minutes are recorded on photomicrographs. Computer-aided image analysis of the photographic negatives converts light-scattering information to a digital representation of the bacterial density profiles. A mathematical model is used to quantitatively characterize these observations in terms of intrinsic cell parameters: a chemotactic sensitivity coefficient, χ0, from the aggregate cell density accumulated in the band and a random motility coefficient, μ0, from population dispersion in the absence of a chemical gradient.

Using the SFDC assay and an individual cell-based mathematical model we successfully determined values for both of these population parameters forEscherichia coli K12 responding to fucose. The values we obtained were μ0=1.1 ± 0.4 x 10-5 cm2/sec and χ0=8 ± 3 x 10-5 cm2/sec. These parameters will be useful for predicting population behavior in application systems such as biofilm development, population dynamics of genetically-engineered bacteria released into the environment, and in situ bioremediation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis byEscherichia coli. J Gen Microbiol 74:77–91

    PubMed  CAS  Google Scholar 

  2. Armitage JP, Gallagher A, Johnston AWB (1988) Comparison of the chemotactic behaviour ofRhizobium leguminosarium with and without the nodulation plasmid. Molec Microb 2:743–748

    Article  CAS  Google Scholar 

  3. Berg HC, Brown DA (1972) Chemotaxis inEscherichia coli analyzed by three-dimensional tracking. Nature 239:500–504

    Article  PubMed  CAS  Google Scholar 

  4. Borkovich KA, Simon MI (1990) The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63:1339–1348

    Article  PubMed  CAS  Google Scholar 

  5. Chet I, Asketh P, Mitchell R (1975) Repulsion of bacteria from marine surfaces. Appl Microbiol 30:1043–1045

    PubMed  CAS  Google Scholar 

  6. Dalquist FW, Lovely P, Koshland DE Jr (1972) Quantitative analysis of bacterial migration in chemotaxis. Nature (London) New Biol 236:120–123

    Article  Google Scholar 

  7. Ford RM, Lauffenburger DA (1991) Measurement of bacterial random motility and chemotaxis coefficients; II. Application of single cell-based mathematical model. Biotech Bioeng 37:661–672

    Article  CAS  Google Scholar 

  8. Ford RM, Lauffenburger DA (1991) Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients. Bull Math Biol 53:721–749

    PubMed  CAS  Google Scholar 

  9. Ford RM, Phillips BR, Quinn JA, Lauffenburger DA (1991) Measurement of bacterial random motility and chemotaxis coefficients: I. stopped-flow diffusion chamber assay. Biotech Bioeng 37:647–660

    Article  CAS  Google Scholar 

  10. Freter R, O'Brien PCM, Macsai MS (1979) Effect of chemotaxis on the interaction of cholera vibrios with intestinal mucosa. Am J Clinical Nutrition 32:128–132

    CAS  Google Scholar 

  11. Gristina AG (1987) Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science 237:1588–1595

    Article  PubMed  CAS  Google Scholar 

  12. Gulash M, Ames P, Larosiliere RC, Bergman K (1984)Rhizobia are attracted to localized sites on legume roots. Appl Env Microbiol 48:149–152

    CAS  Google Scholar 

  13. Holz M, Chen S-H (1979) Spatio-temporal structure of migrating chemotactic band ofEscherichia coli. I. Traveling band profile. Biophys J 26:243–262

    PubMed  CAS  Google Scholar 

  14. Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30:225–234

    Article  PubMed  CAS  Google Scholar 

  15. Kelly FX, Dapsis K, Lauffenburger D (1988) Effect of bacterial chemotaxis on dynamics of microbial competition. Microbial Ecol 16:115–131

    Article  Google Scholar 

  16. Kennedy MJ, Lawless J (1985) Role of chemotaxis in the ecology of denitrifiers. Appl Env Microbiol 49:109–114

    CAS  Google Scholar 

  17. Koshland DE Jr (1988) Chemotaxis as a model second-messenger system. Biochemistry 27:5829–5834

    Article  PubMed  CAS  Google Scholar 

  18. Lauffenburger D, Aris R, Keller K (1982) Effects of cell motility and chemotaxis on microbial population growth. Biophys J 40:209–219

    Article  PubMed  CAS  Google Scholar 

  19. Lauffenburger D, Calcagno PB (1983) Competition between two microbial populations in a nonmixed environment: Effect of cell random motility. Biotech Bioeng 25:2103–2125

    Article  CAS  Google Scholar 

  20. Lauffenburger DA (1988) Laboratory and theoretical models for the effects of bacterial motility and chemotaxis on microbial population growth. In: Wimpenny JWT (ed) CRC handbook of laboratory model systems for microbial ecosystems, vol 2. CRC Press, Boca Raton, Florida, pp 141–176

    Google Scholar 

  21. Macnab RM, Koshland DE Jr (1972) The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci USA 69:2509–2512

    Article  PubMed  CAS  Google Scholar 

  22. Macnab RM, Aizawa S-I (1984) Bacterial motility and the bacterial flagellar motor. Ann Rev Biophys Bioeng 13:51–83

    Article  CAS  Google Scholar 

  23. Mesibov R, Ordal GW, Adler J (1973) The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. J Gen Physiol 62:203–223

    Article  PubMed  CAS  Google Scholar 

  24. Parkinson JS (1988) Protein phosphorylation in bacterial chemotaxis. Cell 53:1–2

    Article  PubMed  CAS  Google Scholar 

  25. Rivero MA, Tranquillo RT, Buettner HM, Lauffenburger DA (1989) Transport models for chemotactic cell populations based on individual cell behavior. Chem Eng Sci 44:2882–2897

    Google Scholar 

  26. Rivero-Hudec M, Lauffenburger DA (1986) Quantification of bacterial chemotaxis by measurement of model parameters using the capillary assay. Biotech Bioeng 28:1178–1190

    Article  CAS  Google Scholar 

  27. Segel LA, Jackson JL (1973) Theoretical analysis of chemotactic movement in bacteria. J Mechanochem Cell Motil 2:25–34

    PubMed  CAS  Google Scholar 

  28. Spudich JL, Koshland DE Jr (1975) Quantitation of the sensory response in bacterial chemotaxis. Proc Natl Acad Sci USA 72:710–713

    Article  PubMed  CAS  Google Scholar 

  29. Staffeld PO, Quinn JA (1989) Diffusion-induced banding of colloid particles via diffusiophoresis. I. Electrolytes. J Colloid Int Sci 130:69–87

    Article  CAS  Google Scholar 

  30. Stewart RC, Dalquist FW (1987) Molecular components of bacterial chemotaxis. Chem Rev 87:997–1025

    Article  CAS  Google Scholar 

  31. Stock J, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, R.M., Phillips, B.R., Quinn, J.A. et al. Stopped-flow chamber and image analysis system for quantitative characterization of bacterial population migration: Motility and chemotaxis ofEscherichia coli K12 to fucose. Microb Ecol 22, 127–138 (1991). https://doi.org/10.1007/BF02540219

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02540219

Keywords

Navigation