Skip to main content
Log in

Survival ofEscherichia coli andYersinia enterocolitica in stream water: Comparison of field and laboratory exposure

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Experiments were done to compare the influence of three aquatic exposure methods on the behavior of pathogenic and nonpathogenic enteric bacteria (Yersinia enterocolitica andEscherichia coli). Bacterial suspensions were exposed to stream water in membrane diffusion chambers in situ as well as in the laboratory using a large vessel of stream water and in enclosed bottles. The persistence of culturability of the bacterial suspensions was dependent upon the method of aquatic exposure. This difference was most apparent during the initial six days of each experiment. A steady decline in colony forming units was seen after a short stationary period in chambers in situ, while there was an abrupt increase in bacteria within chambers exposed in the laboratory. A rapid initial decrease was observed in the experimental variation using bottles, accompanied by higher levels of injury inE. coli and reduced expression of plasmid-borne virulence phenotypes inY. enterocolitica. However, there were no changes in the plasmid profiles of either organism throughout the 21-day duration of the experiments. In addition, the survival and injury of pathogenic and nonpathogenic strains of both test bacteria was very similar with aquatic exposure. These results suggest that the response of enteric bacteria in aquatic environments is influenced by experimental design as well as other factors and that the comparison of survival data should only be attempted when similar methods are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altherr R, Kasweck KL (1982) In situ studies with membrane diffusion chambers of antibiotic resistance transfer inEscherichia coli. Appl Environ Microbiol 44:838–843

    PubMed  CAS  Google Scholar 

  2. Anita HJ, McAllister CD, Parsons TR, Stephens K, Strickland JDH (1963) Further measurements of primary production using a large volume plastic sphere. Limnol Oceanogr 8:166–183

    Google Scholar 

  3. Awong J, Bitton G, Chaudhry GR (1990) Microcosm for assessing survival of genetically engineered microorganisms in aquatic environments. Appl Environ Microbiol 56:977–983

    PubMed  CAS  Google Scholar 

  4. Bhaduri A, Conway LK, Lachia RV (1987) Assay of crystal violet binding for rapid identification of virulent plasmid-bearing clones ofYersinia enterocolitica. J Clin Microbiol 25:1039–1042

    PubMed  CAS  Google Scholar 

  5. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    PubMed  CAS  Google Scholar 

  6. Byrd JJ, Colwell R (1990) Maintenance of plasmids pBR322 and pUC8 in nonculturableEscherichia coli in the marine environment. Appl Environ Microbiol 56:2104–2107

    PubMed  CAS  Google Scholar 

  7. Caldwell BA, Ye C, Griffiths RP, Moyer CL, Morita RY (1989) Plasmid expression and maintenance during long-term starvation-survival of bacteria in well water. Appl Environ Microbiol 55:1860–1864

    PubMed  CAS  Google Scholar 

  8. Caulcott CA, Dunn A, Robinson HA, Cooper NS, Brown ME, Rhodes PM (1987) Investigation of the effect f growth environment on the stability of low-copy-number plasmids inEscherichia coli. J Gen Microbiol 133:1881–1889

    PubMed  CAS  Google Scholar 

  9. Chao W-L, Ding R-D, Chen R-S (1988) Survival ofYersinia enterocolitica in the environment. Can J Microbiol 34:753–756

    PubMed  CAS  Google Scholar 

  10. Craun GF (1986) Waterborne diseases in the United States. CRC Press, Boca Raton

    Google Scholar 

  11. Elias-Montalvo EE, Calvo A, Hazen TC (1989) Survival and distribution ofYersinia enterocolitica in a tropical rain forest stream. Curr Microbiol 18:119–126

    Article  Google Scholar 

  12. Ferguson RL, Buckley EN, Palumbo AV (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55

    PubMed  CAS  Google Scholar 

  13. Finney DJ (1978) Statistical methods in biological assays. Macmillan, New York

    Google Scholar 

  14. Flint KP (1987) Long term survival ofEscherichia coli in river water. J Appl Bacteriol 63: 261–270

    PubMed  CAS  Google Scholar 

  15. Goodwin D, Slater JH (1979) The influence of the growth environment on the stability of a drug resistance plasmid inEscherichia coli K12. J Gen Microbiol 111:201–210

    Google Scholar 

  16. Hesseman J, Algermissen B, Laufs R (1984) Genetically manipulated virulence ofYersinia enterocolitica. Infect Immun 46:105–110

    Google Scholar 

  17. Jain RK, Sailer GS, Wilson JT, Houston L, Pacia D (1987) Maintenance and stability of introduced genotypes in groundwater aquifer material. Appl Environ Microbiol 53:996–1002

    PubMed  CAS  Google Scholar 

  18. Kjelleberg S, Hermansson M, Marden P, Jones GW (1987) The transient phase between growth and nongrowth of heterotrophic bacteria with emphasis on the marine environment. Ann Rev Microbiol 41:26–49

    Article  Google Scholar 

  19. Lachica RV, Zink DL (1984) Determination of plasmid-associated hydrophobicity ofYersinia enterocolitica by a latex particle agglutination test. J Clin Microbiol 19:660–663

    PubMed  CAS  Google Scholar 

  20. Laird W, Cavanaugh DC (1980) Correlation of autoagglutination and virulence of yersiniae. J Clin Microbiol 11:430–432

    PubMed  CAS  Google Scholar 

  21. LeChevallier MW, McFeters GA (1985) Enumerating injured coliforms in drinking water. J. Am Water Works Assoc 77:81–87

    Google Scholar 

  22. LeChevallier MW, Singh A, Schiemann DA, McFeters GA (1985) Changes in virulence of waterborne enteropathogens with chlorine injury. Appl Environ Microbiol 50:412–419

    PubMed  CAS  Google Scholar 

  23. LeChevallier MW, Schiemann DA, McFeters GA (1987) Factors contributing to the reduced invasiveness of chlorine-injuredYersinia enterocolitica. Appl Environ Microbiol 53:1358–1364

    PubMed  CAS  Google Scholar 

  24. Lessard EJ, Sieburth JMcN (1983) Survival of natural sewage populations of enteric bacteria in diffusion and batch chambers in the marine environment. Appl Environ Microbiol 45: 950–959

    PubMed  CAS  Google Scholar 

  25. Lopez-Torres AJ, Prieto L, Hazen TC (1988) Comparison of the in situ survival and activity ofKlebsiella pneumoniae andEscherichia coli in tropical marine environments. Micro Ecol 15:41–47

    Article  Google Scholar 

  26. Matin A, Auger EA, Blum PH, Schultz JE (1989) Genetic basis of starvation survival of nondifferentiating bacteria. Ann Rev Microbiol 43:293–316

    Article  CAS  Google Scholar 

  27. McFeters GA (1990) Enumeration, occurrence and significance of injured indicator bacteria in drinking water. In: McFeters GA (ed) Drinking water microbiology: Progress and recent developments. Springer-Verlag, New York, pp 478–492

    Google Scholar 

  28. McFeters GA, Bissonnette GK, Jezeski JJ, Thomson CA, Stuart DG (1974) Comparative survival of indicator bacteria and enteric pathogens in well water. Appl Microbiol 27:823–829

    PubMed  CAS  Google Scholar 

  29. McFeters GA, Stuart DG (1972) Survival of coliform bacteria in natural waters: Field and laboratory studies with membrane filter chambers. Appl Microbiol 24:805–811

    PubMed  CAS  Google Scholar 

  30. McFeters GA, Cameron SC, LeChevallier MW (1982) Influence of diluents, media and membrane filters on the detection of injured waterborne coliform bacteria. Appl Environ Microbiol 43:97–103

    PubMed  CAS  Google Scholar 

  31. Menzel DW, Case J (1977) Concept and design: Controlled ecosystem pollution experiment. Bull Mar Sci 271:1–7

    Google Scholar 

  32. Morita RY (1982) Starvation survival of heterotrophs in the marine environment. In: Marshall KC (ed), Advances in microbial ecology, Vol. 6 Plenum Press, New York, pp 171–198

    Google Scholar 

  33. Nystrom T, Flardh K, Kjelleberg S (1990) Responses to multiple-nutrient starvation in marineVibrio sp. strain CCUG 15956. J Bacteriol 172:7085–7097

    PubMed  CAS  Google Scholar 

  34. Portnoy DA, Martinez RJ (1985) Role of a plasmid in the pathogenicity ofYersinia species. In: Gobel W (ed) Genetic approaches to microbial pathogenicity. Springer-Verlag, New York pp 29–51

    Google Scholar 

  35. Rozak DB, Colwell RR (1987) Survival strategies of bacteria in natural environments. Microbiol Rev 51:365–379

    Google Scholar 

  36. Schiemann DA, Devenish JA (1982) Relationship of HeLa cell infectivity to biochemical, serological and virulence characteristics ofYersinia enterocolitica. Infect Immun 35:497–506

    PubMed  CAS  Google Scholar 

  37. Schiemann DA, Devenish JA, Toma S (1981) Characteristics of virulence in human isolates ofYersinia enterocolitica. Infect Immun 32:400–403

    PubMed  CAS  Google Scholar 

  38. Schultz JS, Gerhardt P (1969) Dialysis culture of microorganisms: Design, theory and results. Bacteriol Rev 33:1–47

    PubMed  CAS  Google Scholar 

  39. Singh A, McFeters GA (1986) Recovery, growth and production of heat-stable enterotoxin byEscherichia coli after copper-induced injury. Appl Environ Microbiol 51:738–742

    PubMed  CAS  Google Scholar 

  40. Singh A, McFeters GA (1987) Survival and virulence of copper-and chlorine-stressedYersinia enterocolitica in experimentally infected mice. Appl Environ Microbiol 53:1768–1774

    PubMed  CAS  Google Scholar 

  41. Singh A, Yeager R, McFeters GA (1986) Assessment of in vivo revival, growth and pathogenicity ofEscherichia coli strains after copper- and chlorine-induced injury. Appl Environ Microbiol 52:832–837

    PubMed  CAS  Google Scholar 

  42. Skurnik M, Bolin I, Heikkinen H, Piha S, Wolf-Watz H (1984) Virulence plasmid-associated autoagglutination inYersinia spp. J Bacteriol 158:1033–1036

    PubMed  CAS  Google Scholar 

  43. Taylor CB, Collins UG (1949) Development of bacteria in waters in glass containers. J Gen Microbiol 3:32–42

    CAS  PubMed  Google Scholar 

  44. Vasconcelos GJ, Swartz RG (1976) Survival of bacteria in seawater using a diffusion chamber apparatus in situ. Appl Environ Microbiol 31:913–920

    PubMed  CAS  Google Scholar 

  45. Walsh SM, Bissonnette GK (1987) Effect of chlorine injury on heat-labile enterotoxin production in enterotoxigenicEscherichia coli. Can J Microbiol 33:1091–1096

    Article  PubMed  CAS  Google Scholar 

  46. Whipple CE (1901) Changes that take place in the bacterial contents of water during transportation. Technol Q Proc Soc Arts 14:21–29

    Google Scholar 

  47. Xu H-S, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of non-culturableEscherichia coli andVibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323

    Article  Google Scholar 

  48. ZoBell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39–56

    PubMed  CAS  Google Scholar 

  49. ZoBell CE, Anderson DQ (1936) Observation on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biol Bull (Woods Hole) 71:324–342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFeters, G.A., Terzieva, S.I. Survival ofEscherichia coli andYersinia enterocolitica in stream water: Comparison of field and laboratory exposure. Microb Ecol 22, 65–74 (1991). https://doi.org/10.1007/BF02540213

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02540213

Keywords

Navigation