Skip to main content
Log in

The biology of carbonate precipitation by cyanobacteria

  • Published:
Facies Aims and scope Submit manuscript

A Correction to this article was published on 01 December 1993

Summary

In the freshwater areas of the Everglades, Florida, U.S.A., carbonate is precipitated in dense cyanobacterial mats. Precipitation is linked with photosynthesis in the mats in a quantitative relationship.

On ground of field observations and experiments a model for precipitation in the filamentous cyanobacteriaScytonema is proposed, which links precipitation to bicarbonate use in photosynthesis and subsequent release of OH ions.

Besides supersaturation of the water with respect to carbonate and photosynthetic bicarbonate use, precipitation requires a suitable sheath structure and composition. The characteristics of the sheath seem to be responsible for a distinct crystal morphology in the two generaScytonema andSchizothrix, as well as for the restriction of calcification to the outer sheath inScytonema. In the immediate vicinity of the trichom precipitation seems to be inhibited.

Comparison of this form of calcifying cyanobacteria with calcification in calcareous algae shows many similarities and rises the question of the biological significance of calcification or precipitation.

The precipitated carbonate shows equilibrium precipitation in its δ oxygen values, while it is enriched in13C relative to the ambient water. This agrees with a model of precipitation in which the carbonate derives from the water immediately surrounding the filament. There the water is depleted in12C which is preferably taken up for photosynthesis. No respiratory carbon is involved in precipitation.

From measurements of the amount of precipitation in the field and in experiments the annual sedimentation rate is estimated to be 0.024 to 0.24 mm. These values fall within the range of laminae thicknesses in fossil algal laminites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addadi, L. &Weiner, S. (1985): Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. —Proc. Natl. Acad. Sci. U.S.A.,82/6, 4110–4114, 5 Figs., Washington

    Article  Google Scholar 

  • Badger, M.R. &Andrews, T.J. (1982): Photosynthesis and inorganic carbon usage by the marine cyanobacterium,Synechococcus sp..—Plant Physiol.,70/2, 517–523, 9 Figs., 1 Tab., Lancaster, Pa.

    Google Scholar 

  • Badger, M.R., Bassett, M. &Commins, H.N. (1985): A model of HCO 3 accumulation and photosynthesis in the cyanobacteriumSynechococcus sp.,—Plant Physiol.,77/2, 465–471, 7 Figs., Lancaster, Pa.

    Google Scholar 

  • Badger, M.R. &Price, G.D. (1989): Carbonic anhydrase activity associated with the cyanobacteriumSynechococcus PCC 7942. —Plant Physiol.,88/1, 51–60, 2 Tabs., 5 Figs., Lancaster, Pa.

    Google Scholar 

  • Borowitzka, M.A. (1982): Mechanisms in algal calcification.— In:Round, F.E., Chapman, D.J. (eds.): Progress in Phycological Research, vol.1, 137–178, 11 Figs., 2 Tab., Amsterdam (Elsevier Biomedical Press)

    Google Scholar 

  • — (1986): Physiology and biochemistry of calcification in the Chlorophyceae.— In:Leadbeater, B.S.C., Riding, R. (eds.): Biomineralization in Lower Plants and Animals.—The Systematic Association, Spec. Vol. 30, 400 pp., 107–124, 2 Figs., 1 Tab., Oxford (Clarendon Press)

    Google Scholar 

  • Borowitzka, M.A. (1989): Carbonate calcification in algae-Initiation and control.—In:Mann, S., Webb, J., Williams, R.J.P. (eds.): Biomineralization: chemical and biochemical perspectives. — 541 pp., 63–94, 10 Figs., 4 Tabs., Weinheim (VCH Verlagsgesellschaft mbH)

    Google Scholar 

  • Borowitzka, M.A. &Larkum, A.W.D. (1976): Calcification of the green algaeHalimeda; IV. The action of metabolic inhibitors on the photosynthesis and calcification.—J. Exp. Bot.,27, 894–907, 5 Figs., 4 Tabs., Oxford

    Google Scholar 

  • — & — (1977): Calcification in the green algaeHalimeda; I: An ultrastucture study of thallus development.—J. Phycol.,13/1, 6–16, 24 Figs., New York

    Article  Google Scholar 

  • Braithawatie, C.J.R., Casanova, J., Frevert, F., Whitton, B.A. (1989): Recent stromatolites in landlocked pools on Aldabra, western Indian Ocean.—Paleogeogr., Paleoclimat., Paleoecol.,69/3–4, 145–165, 4 Pls., 23 Figs., Amsterdam

    Article  Google Scholar 

  • Calder, J.A., Parker, P.L. (1973): Geochemical implications of induced changes in 13C fractionation by blue-green algae.— Geochim. Cosmochim. Acta,37/1, 133–140, 2 Figs., 3 Tabs., New York

    Article  Google Scholar 

  • Castenholz, R.W. (1982): Motility and taxes.—Carr, N.G. &Whitton, B.A. (eds.): The Biology of Cyanobacteria.— 688 pp., 414–439, Oxford (Blackwell)

    Google Scholar 

  • Cox, G., James, J.M., Leggett, K.E.A., Osborne, R., Armstrong, L. (1989): Cyanobacterially deposited speleothems: subaerial stromatolites.—Geomicrobiol. J., 7, 245–252, 7 Figs., New York

    Google Scholar 

  • Cummings, C.E., McCarthy, H.M. (1982): Stable carbon istope ratios inAstrangia danae: evidence for algal modification of carbon pools used in calcification.—Geochim. Cosmochim. Acta,46/6, 1125–1129, 2 Figs., 2 Tabs., New York

    Article  Google Scholar 

  • Defarge, C., Trichet, J., Sin, P. (1985): First data on the biogeochemistry of Kopara deposits from Rangiroa Atoll.— Proceed. 5th Int. Coral Reef Congress, Tahiti,3, 365–370, 6 Figs., 2 Tabs., Moorea

    Google Scholar 

  • Drever, J. (1988): The Geochemistry of Natural Waters.— 2nd Ed., 437 pp., Englewood Cliffs (Prentice Hall)

    Google Scholar 

  • Epstein, S. &Mayeda, T. (1953): Variation of18O content of waters from natural sources.—Geochim. Cosmochim. Acta,4/5, 213–224, 3 Figs., 1 Tab., New York

    Article  Google Scholar 

  • Espie, G.S., Miller, A.G. &Canvin, D.T. (1989): Selective and reversible inhibition of active CO2 transport by hydrogen sulfide in a cyanobacterium.—Plant. Physiol.,91/1, 387–294, 7 Figs., Lancaster, Pa.

    Google Scholar 

  • Estep, M.F. (1984): Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park.— Geochim. Cosmochim. Acta,48/3, 591–599, 6 Figs., 10 Tabs., New York

    Article  Google Scholar 

  • Fritz, P., Poplawski, S. (1974): 18O and 13C in the sheaths of freshwater molluscs and their environments.—Earth Planet. Sci. Lett.,24, 91–98, 6 Figs., 1 Tab., Amsterdam

    Article  Google Scholar 

  • Gieskes, J. (1986): Water chemistry procedures aboard Joides Resolution-some coments.-Ocean Drilling Program, Technical Note No.5, 46 pp., College Station

  • Giraud, G. &Cabioch, J. (1979): Ultrastructure and the elaboration of calcified cell-walls in the coralline algae (Rhodophyta, Cryptonemiales).—Biol. Cellulaire,36, 81–86, Paris

    Google Scholar 

  • Gleason, P.J. (1972): The origin, sedimentation and stratigraphy of a calcitic mud located in the southern fresh-water Everglades. —PhD-Thesis, Pennsylvania State Univ., 355 pp., University Park

  • Gleason, P.J. & Spackman, W.Jr. (1974): Calcareous periphyton and water chemistry in the Everglades.—In:Gleason, P.J. (ed.): Environments in South Florida, Present and Past.—146–181, 34 Figs., 9 Tab., Miami

  • Golubic, S. (1972): The relationship between blue-green algae and carbonate deposits.—In:Carr, N.G. &Whitton, B.A. (eds.): The Biology of Blue-Green Algae.—676 pp., 434–472, 19 Figs., Oxford (Blackwell)

    Google Scholar 

  • — (1983): Stromatolites, fossil and recent: a case history.—In:Westbroek, P., de Jong, E.W. (eds.). Biomineralization and biological metal accumulation.—313–326, 6 Figs., Dordrecht (Reidel)

    Google Scholar 

  • Golubic, S. &Campbell, S.E. (1981): Biogenically formed aragonite concretions in marineRivularia.—In:Monty, C. (ed.): Phanerozoic Stromatolites: Case histories.—249 pp., 209–229, 3 Pls., 2 Figs., 1 Tab., Berlin (Springer)

    Google Scholar 

  • Gran, G. (1952): Determination of the equivalence point in potentiometric titrations, Part I.—Analyst,77, 661–671, London

    Article  Google Scholar 

  • Greenfield, E.M., Wilson, D.C. &Crenshaw, M.A. (1984): Ionotropic nucleation of calcium carbonate by molluscan matrix. —Am. Zool.,24/4, 925–932, 7 figs., Bloomington, Indiana

    Google Scholar 

  • Häder, D.-P. (1987): Photomovement.—In:Fay, P., Van Baalen, C. (eds.): The Cyanobacteria.—325–345, 10 Figs., 1 Tab., Amsterdam (Elsevier)

    Google Scholar 

  • Hardie, L.A. &Ginsburg, R.N. (1977): Layering: The origin and environmental significance of lamination and thin bedding.— In:Hardie, A. (ed.): Sedimentation on the Modern Carbonate Tidal Flats of NW Andros-Island, Bahamas.—Johns Hopkins Univ. Studies in Geol.,22, 203 pp., 50–123, 94 Figs., 16 Tabs., Baltimore

    Google Scholar 

  • Helder, R.J. (1988): A quantitative approach to the inorganic carbon in aqueous media used in the biological research; dilute solutions isolated from the atrnosphere.—Plant Cell Environment,11, 211–230, 4 Figs., 5 Tabs., Oxford

    Article  Google Scholar 

  • Horodyski, R.J. &Vonder Haar, S.P. (1975): Recent calcareous stromatolites from Laguna Mormona (Baja California) Mexico. —J. Sed. Petrol.,45/4, 894–906, 7 Figs., Tulsa

    Google Scholar 

  • Jones, B. &Kahle, C.F. (1986): Dendritic calcite crystals formed by calcification of algal filaments in a vadose environment.—J. Sed. Petrol.,56/2, 217–222, 7 Figs., Tulsa

    Google Scholar 

  • Kaplan, A. (1981): Photoinhibition inSpirulina platensis: Response of photosynthesis and HCO3 uptake capability to CO2-depleted conditions.—J. Exp. Bot.,32/2, 669–677, 4, Figs., 1 Tab., Oxford

    Google Scholar 

  • — (1981): Photoinhibition inSpirulina platensis: Response of photosynthesis and HCO3-uptake capability to CO2-depleted conditions.—J. Exp. Bot.,32/2, 669–677, 4 Figs., 1 Tab., Oxford

    Google Scholar 

  • Kaplan, A. (1985): Adaptation to CO2 levels: Induction and the mechanism for inorganic carbon uptake.—In:Lucas, W.J. & Berry, J.A. (eds.) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms.—Am. Soc. Plant Physiol., 325–338, 9 Figs., Rockville, MD.

  • Kaplan, A., Marcus, Y., Zenvirth, D., Omata, T., Reinhold, L. &Ogawa, T. (1987): The mechanism of inorganic carbon uptake by cyanobacteria: energetization and activation by light.—In:Biggins, J. (ed.): Progress in Photosynthesis Research, vol. IV, 6.301–6.307, 8 Figs., Dordrecht (M. Nijhoff Publ.)

    Google Scholar 

  • Kazmierczak, J., Itiekot, V. &Degens, E.T. (1985): Biocalcification through time: environmental challenge and cellular response.— Paläontolog. Zeitschr.,59/1–2, 15–33, 6 Figs., Stuttgart

    Google Scholar 

  • Keith, M.L. &Weber, J.N. (1965): Systematic relationships between carbon and oxygen isotopes in carbonates deposited by modern corals and algae.—Science,150, 498–501, 2 Figs., 1 Tab., Washington

    Article  Google Scholar 

  • Kempe, S. &Kazmierczak, J. (1990): Calcium carbonate supersaturation and the formation of in situ calcified stromatolites.— In:Ittekkot, V, Kempe, S., Michaelis, W., Spitzy, A. (eds.): Facets of modern biogeochemistry, 433 pp., 161 Figs, 255–278, 4 Figs., 4 Tabs., Berlin (Springer)

    Google Scholar 

  • Krause, G.H. (1988): Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms.—Physiol. Plant.,74/3, 566–574, 2 Figs., Copenhagen

    Article  Google Scholar 

  • Krumbein, W.E. &Giele, C. (1979): Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. —Sedimentology,26/4, 593–604, 9 Figs., Amsterdam

    Article  Google Scholar 

  • Krumbein, W.E. &Potts, M. (1979): Girvanella-like stuctures formed by Plectonema gloeophilum (Cyanophyta) from the Borrego desert in Southern California.—Geomicrobiol. J.,1/3, 211–217, 4 Figs., 1 Tab., New York

    Google Scholar 

  • Leinfelder, R.R. (1985): Cyanophyta calcification, morphotypes and depositional environments (Alenquer oncolite, Upper Kimmeridgian?. Portugal).—Facies,12, 253–274, 2 Pls., 3 Figs., 2 Tab., Erlangen

    Article  Google Scholar 

  • Littler, M.M. (1976): Calcification and its role among macroalgae. —Micronesia,12/1, 27–41, 7 Figs., 3 Tabs., Agana

    Google Scholar 

  • Lucas, W.J. (1979): Alkaline band formation in Chara corallina.— Plant Physiol.,63/2, 248–254, 9 Figs., 1 Tab., Lancaster, Pa.

    Google Scholar 

  • Lucas, W.J. (1983): Photosynthetic assimilation of exogenous HCO3-by aquatic plants.—Ann. Rev. Plant Physiol.,34, 71–104, 5 Figs., Palo Alto, Pa.

    Article  Google Scholar 

  • Lyons, B.W., Long, D.T., Hines, M.E., Gaudette, H.E., Armstrong, P.B. (1984): Calcification of cyanobacterial mats in Solar Lake, Sinai.—Geology,12/10, 623–626, 1 Fig., 2 Tabs., Boulder

    Article  Google Scholar 

  • McConaughey, T. (1989):13C and18O isotopic disequilibrium in biological carbonates: I. patterns.—Geochim. Cosmochim. Acta,53/1, 151–162, 15 Figs., 2 Tabs., New York

    Article  Google Scholar 

  • Merz, M.U.E. (1990): Karbonatfällung durch Cyanobakterien im Süßwasserbereich der Everglades, Florida.—unpubl. PhD-Thesis, Univ. of Marburg, 71 pp., 19 Figs., 7 Tabs., Marburg

    Google Scholar 

  • Merz, M.U.E. & Zankl, H. (submitted): The influence of the sheath on carbonate precipitation by cyanobacteria.—submitted to Boll. Soc. Pal. Italiana, Modena

  • Miller, A.G. &Colman, B. (1980): Evidence for HCO3-transport by the blue, green alga (cyanobacterium)Coccochloris peniocystis. —Plant Physiol.65/2, 397–402, 7 Figs., Lancaster, Pa.

    Google Scholar 

  • Miller, A.G., Espie, G.S. &Canvin, D.T. (1990): Physiological aspects of CO2 and HCO3-transport by cyanobacteria: areview. —Can. J. Bot.,68/6, 1291–1302, 10 Figs., Ottawa

    Google Scholar 

  • Millero, F.J. (1979): The thermodynamics of the carbonate systems in seawater.—Geochim. Cosmochim. Acta,43/10, 1651–1661, 9 Figs., 9 Tabs., New York

    Article  Google Scholar 

  • Monty, C.L.V. (1972): Recent algal stromatolitic deposits, Andros Island, Bahamas, Preliminary report.—Geol. Rdsch.,61, 742–783, 32 Figs., 1 Tab., Stuttgart

    Article  Google Scholar 

  • Mook, W. G. & Vogel, J.C. (1968): Isotopic equilibrium between shells and their environment.—Science,159, No. 3817, 1 Fig., Washington

  • Müller-Jungbluth, W.-U. (1968): Sedimentary petrologic investigation of the Upper Triassic ‘Hauptdolomit’ of the Lechtaler Alps, Tirol, Austria.—In:Müller, G. &Friedman, G. (eds.) Recent Developments in Carbonate Sedimentology in Central Europe.—255 pp., 228–239, 14 Figs., Berlin (Springer)

    Google Scholar 

  • Müller-Jungbluth, W.-U. (1970): Sedimentologische Untersuchung des Hauptdolomit der Östlichen Lechtaler Alpen, Tirol.-Festbd. Geol. Inst. 300-J.-Feier Univ. Innsbruck, 255–308, Innsbruck

  • Obenlüneschloss, J. &Schneider, J. (1990): Ecology and calcification patterns of Rivularia (Cyanobacteria).—In:Anagnostidis, K., Hickel, B. &Komarek, J. (eds.) Proc. 11th Symp. IAC.— Arch. Hydrobiol., Suppl. Vol., Algological Studies, Berlin

    Google Scholar 

  • Ogawa, T. &Kaplan, A. (1987): A model for inorganic carbon accumulation in cyanobacteria.—In:Biggins, J. (ed.): Progress in Photosynthesis Research, vol. IV.—6.297–6.300, 3 Figs., 1 Tab., Dordrecht (M. Nijhoff Publ.)

    Google Scholar 

  • Paasche, E. (1964): A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi.—Physiol. Plant. (suppl.) III, 1–82, Copenhagen

    Google Scholar 

  • Pentecost, A. (1978): Blue-green algae and freshwater carbonate deposits.—Proc. R. Soc. London, Ser. B,200, 43–61, 1 Pl., 11 Figs., 10 Tab., London

    Google Scholar 

  • — (1980): Calcification in plants.—Int. Rev. Cytol.,62, 1–26, 2 Tabs., New York

    Article  Google Scholar 

  • — (1984): Effects of sedimentation and light intensity on a matforming Oscillatoriacea with particular reference toMicrocoleus lyngbyaceus Gomont.—J. Gen. Microbiol.130, 983–990, 4 Figs., London

    Google Scholar 

  • — (1985): Association of cyanobacteria with tufa deposits: Identity, enumeration, and nature of the sheath material revealed by histochemistry.—Geomicrobiol. J.,4/3, 286–297, 7 Tab., New York

    Google Scholar 

  • — (1988): Observations on the growth and calcium carbonate deposition in the green alga Gongrosira.—New Phytol.,110/2, 2 Figs., 7 Tab., 249–253, London

    Article  Google Scholar 

  • Pentecost, A. &Riding, R. (1986): Calcification in cyanobacteria. —In:Leadbeater, B.S.C., Riding, R. (ed.) The Systematic Association, Spec. Vol. 30, Biomineralization in Lower Plants and Animals.—400 pp., 73–90, 6 Figs., Oxford (Clarendon Press)

    Google Scholar 

  • Prins, H.B.A. &Elzenga, J.T.M. (1989): Bicarbonate utilization: Function and mechanism.—Aquatic Bot.,34/1, 59–83, 3 Figs., 1 Tab., Amsterdam

    Article  Google Scholar 

  • Price, G.D. &Badger, M.R. (1989a): Ethoxyzolamide inhibition of CO2 uptake in the cyanobacterium Synechococcus PCC 7942 without apparent inhibition of internal carbonic anhydrase activity.—Plant Physiol.,89/1, 37–43, 8 Figs., Lancaster, Pa.

    Google Scholar 

  • Price, G.D. &Badger, M.R. (1989b): Ethoxyzolamide inhibition of CO2-dependent photosynthesis in the cyanobacterium Synechococcus PCC 7942.—Plant Physiol.,89/1, 44–50, 3 Figs., 8 Tabs., Lancaster, Pa.

    Google Scholar 

  • Raven, J.A. & Lucas, W.J. (1985): Energy costs of carbon acquisition.—In:Lucas, W.J., & Berry, J.A. (eds.): Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms.—Am. Soc. Plant Physiol., 305–325, Rockville

  • Raven, J.A., Smith, F.A. &Walter, N.A. (1986): Biomineralization in the Charophyceae sensu lato.—In:Leadbeater, S.C., Riding, R. (eds.) The Systematic Association, Spec. Vol. 30, Biomineralization in Lower Plants and Animals.—400 pp., 125–139, 1 Tab., Oxford (Clarendon Press)

    Google Scholar 

  • Reinhold, L., Zviman, M. &Kaplan, A. (1987): Inorganic carbon fluxes in cyanobacteria: A quantitative model.—In:Biggins, J. (eds.): Progress in Photosynthesis Research, vol. IV, 6.289–6.296, 6 Figs., Dordrecht (M. Nijhoff Publ.)

    Google Scholar 

  • Riding, R. (1977a): CalcifiedPlectonema (blue-green algae), a recent example ofGirvanella from Aldabra Atoll.—Palaeontology,20/1, 33–46, 1 Pl., 5, Figs., London

    Google Scholar 

  • — (1977b): Problems of affinity in Paleozoic calcareous algae.— In:Flügel, E. (ed.): Fossil algae, recent results and developements.— 375 pp., 202–211, 2 Tabs., Berlin (Springer)

    Google Scholar 

  • — (1982): Cyanophyte calcification and changes in ocean chemistry. —Nature,299, No. 5886, 814–815, 1 Fig., London

    Article  Google Scholar 

  • Rowland, S.M. &Gangloff, R.A. (1988): Structure and paleoecology of Lower Cambrian reefs.—Palaios,3, Reefs Issue, 111–135, 18 Figs., Tulsa

    Google Scholar 

  • Rubinson, M. &Clayton, R.N. (1969): Carbon-13 fractionation between aragonite and calcite.—Geochim. Cosmochim. Acta,33/8, 997–1002, 3 Tabs., New York

    Article  Google Scholar 

  • Sabater, S. (1989): Encrusting algal assemblages in a mediterranean river basin.—Arch. Hydrobiol.,114/4, 555–573, 5 Figs., 6 Tabs., Berlin

    Google Scholar 

  • Scherer, S., Riege, H. &Böger, P. (1988a): Light-induced proton efflux of the cyanobacteriumAnabaena variabilis.—In:Rogers, L.J., Gallon, J.P. (eds.) Biochemistry of the algae and cyanbacteria. —121–129, Oxford (Clarendon Press)

    Google Scholar 

  • Scherer, S., Chen, T.W. &Böger, P. (1988b): A new UV-A/B absorbing pigment in the terrestrial cyanobacgerium Nostoc commune.—Plant Physiol.,88/2, 1055–1057, 4 Figs., 1 Tab., Lancaster, Pa.

    Google Scholar 

  • Scholl, D.W., Craighead, F.C. &Stuiver, M. (1969): Florida submergence curve revised: its relation to coastal sedimentation. —Science,163, No. 3867, 562–564, 3 Figs., Washington

    Article  Google Scholar 

  • Sharkey, T.D. & Berry, J.A. (1985): Carbon isotope fractionation of algae as influenced by an inducible CO2 concentrating mechanism.—In:Lucas, W.J. & Berry, J.A. (eds.) Inorganic carbon uptake by aquatic photosynthetic organisms.—Am. Soc. Plant Physiol., 389–403, 4 Figs., 1 Tab., Rockville

  • Sikes, C.S., Roer, R.D. &Wilbur, K.M. (1980): Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition.—Limnol. Oceanogr.,25/2, 248–261, 7 Figs., 2 Tabs., Baltimore

    Google Scholar 

  • Sikes, C.S. &Wilbur, K.M. (1982): Functions of coccolith formation. —Limnol. Oceanogr.,27/1, 18–26, 3 Figs., 3 Tabs., Baltimore

    Article  Google Scholar 

  • Somers, G.F. &Brown, M. (1978): The affinity of trichomes of blue-green algae for calcium ions.—Estuaries,1, 17–28, 2 Figs., 7 Tabs., Solomons

    Article  Google Scholar 

  • Swart, P.K. (1983): Carbon and oxygen isotope fractionation in scleractinian corals: a review.—Earth Sci. Rev.,19, 51–80, 10 Figs., Amsterdam

    Article  Google Scholar 

  • Swart, P.K., Sternberg, L.D.S.L., Steinen, R. &Harrison, S.A. (1989): Controls on the oxygen and hydrogen isotopic composition of the waters of Florida Bay, U.S.A..—Chem. Geol., Isotope Geosci.,10, 113–125, 8 Figs., 2 Tabs., Amsterdam

    Article  Google Scholar 

  • Tuffery, A.A. (1969): Light and electron microscopy of the sheath of a blue-green alga.—J. Gen. Microbiol.,57/1, 41–50, 5 Plts., London

    Google Scholar 

  • VanLiere, L. &Walsby, A.E. (1982): Interactions of cyanobacteria with light.—In: Carr, N.G., Whitton, B.A. (eds.): The Biology of Cyanobacteria.—Bot. Monographs, Vol.19, 688 pp. 9–45, 13 Figs., 2 Tabs., Oxford (Blackwell)

    Google Scholar 

  • Volokita, M., Zenvirth, D., Kaplan, A. &Reinhold, L. (1984): Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis.—Plant Physiol.76/3, 599–602, 5 Figs., Lancaster

    Article  Google Scholar 

  • Walsby, A.E. (1968): Mucilage secretion and the movement of blue-green algae.—Protoplasma,65/1–2, 223–238, 17 Figs., Wien

    Article  Google Scholar 

  • Weckesser, J., Hofmann, K., Jürgens, U.J., Whitton, B.A. &Raffelsberger, B. (1988): Isolation and chemical analysis of the sheaths of the filamentous cyanobacteriaCalothrix parietina andC. scopulorum.—J. Gen. Microbiol.,134/3, 629–634, 1 Fig., 2 Tabs., London

    Google Scholar 

  • Wheeler, A.P. &Sikes, S. (1984): Regulation of carbonate calcification by organic matrix.—Amer. Zool.,24/4, 933–944, 3 Figs., 1 Tab., Bloomington, Indiana

    Google Scholar 

  • Wolk, P.C. (1973): Physiology and cytobiological chemistry of blue-green algae.—Bacteriological Rev.,37/1, 32–101, 16 Figs., 11 Tabs., Baltimore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02536920.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merz, M.U.E. The biology of carbonate precipitation by cyanobacteria. Facies 26, 81–101 (1992). https://doi.org/10.1007/BF02539795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02539795

Keywords

Navigation