Advertisement

Facies

, Volume 28, Issue 1, pp 145–168 | Cite as

Deep-water stromatolites andFrutexites Maslov from the early and Middle Jurassic of S-Germany and Austria

  • Florian Böhm
  • Thomas C. Brachert
Article

Summary

Despite extensive discussions during the last 20 years stromatolites are still used by many geologists as unequivocal indicators of very shallow-water conditions. We investigated four stratigraphic units from the Lower and Middle Jurassic of southern Germany (Posidonien-Schiefer, Amaltheen-Ton) and of the Northern Calcareous Alps (Adneter Kalk, Klauskalk), which were formerly interpreted as shallow marine sediments by some authors due to the occurrence of stromatolites. Our interpretations of the macro-, micro- and ultrafacies of these sediments are not compatible with shallow-water settings. We therefore propose a deep-marine, aphotic origin of these stromatolites.

Former interpretations of the Posidonien-Schiefer as a shallow-water deposit are mainly based on the occurrence of stromatolites. We favour the model of a temporarily stagnant, deep, aphotic basin for these planktonrich sediments. Particles resembling ooids, but lying within mudstones cannot be taken as evidence for shallow agitated water. They either formed within the mud or are allochthonous.

The deep-water setting of the red limestone of the Alpine Early and Middle Jurassic is indicated by a lack of platform-typical components like coated grains and phototrophic benthos and by shells of plankton and nekton forming a major part of the sediment. Stromatolites occur on the steep slope of a drowned Rhaetian reef with an estimated relief of 50–100 m and immediately below and within radiolarian limestones, deposited below the aragonite compensation depth (ACD).

The aphotic stromatolites show some morphological differences to their shallow water counterparts. In all of our sections they occurred during intervals of reduced sedimentation. They form only thin horizons and probably grew very slowly. Mineralizations by Fe−Mn oxides and phosphate are very common. The presence of a microbial film is evident from binding of sedimentary particles, but the nature of the microbes is not known. Growth habits within the very distinct environments of red limestone and black shales show some common features, but also clear differences.

The microproblematicumFrutexites Maslov is a very common component in deep-water stromatolites, but may also itself form small crusts or dendrolites. It occurs in two different forms. Opaque, slender forms with indistinct outlines probably grew within the weakly lithified sediment. Thicker, transparent forms with well defined outlines are found in cavities and probably also grew on the seafloor. Well preserved specimens display an internal fabric of radially arranged fibres of Fe−Mn oxides and calcite. It is suggested that calcite or aragonite were one original mineralogy ofFrutexites, which was later replaced by Fe−Mn oxides or phosphate.

It is not certain whetherFrutexites is an organic, biomineralized structure or an inorganic mineralization, but the variable mineralogy and growth forms in different environments point to an organic origin. But even if organic, the occurrence in cryptic habitats and negative phototactic growth-directions make it clear thatFrutexites was not phototrophic.

Keywords

Deep-water stromatolites Frutexites Depositional Environment Condensation Red Limestone Black Marl Ferromanganese Crust Phosphate Franconia Alps Jurassic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldinger H. (1968): Die Paläogeographie des schwäbischen Jurabeckens.—Eclogae geol. Helv.,61, 167–182, BaselGoogle Scholar
  2. Awramik, S.M. (1991): Archaean and Proterozoic Stromatolites.— InRiding, R. (ed.): Calcareous Algae and Stromatolites. 289–304, Berlin (Springer)Google Scholar
  3. Bandel, K. &Knitter, H. (1986): On the origin and diagenesis of the bituminous Posidonia Shale (Toarcian) of southern Germany.—Mitt. Geol.-Paläont. Inst. Univ. Hamburg,60, 151–177, HamburgGoogle Scholar
  4. Birzer, F. (1936): Die Monotis-Bank in den Posidonienschiefern, besonders Frankens.—Abh. geol. Landesuntersuch. Bayer. Oberbergamt,26, 3–32, MünchenGoogle Scholar
  5. Böhm, F. (1992): Mikrofazies und Ablagerungsmilieu des Lias und Dogger der Nordöstlichen Kalkalpen.—Erlanger geol. Abh.,121, 57–217, ErlangenGoogle Scholar
  6. Böhm F. & Brachert, Th.C. (1990): Stromatolith-artige Krusten aus tiefmarinen Kalken (Jura, Nördliche Kalkalpen, Franken; Quartär, Rotes Meer) (Vortragskurzfassung).—5. Sedimentologen-Treffen 1990, 1 p., BonnGoogle Scholar
  7. Brachert, Th.C. &Dullo W.-Chr. (1991): Laminar Micrite Crusts and Associated Foreslope Processes, Red Sea.—J. Sed Petr.,61, 345–363, LawrenceGoogle Scholar
  8. Brachert, Th.C., Dullo, W.-Chr. &Brandner, R. (1989): Rezente und triadische Riffhang-‘Stromatolithe’ (Rotes Meer/Südalpen).— Geol. Paläont. Mitt. Innsbruck,16, 13–14, InnsbruckGoogle Scholar
  9. Bruder, H.J. (1968): Ökologische, geochemische und sedimentologische Untersuchungen im Lias zeta (oberes Toarcium) Schwabens, mit Berücksichtigung des obersten Lias epsilon.—Arb. Geol. Paläont. Inst. TH-Stuttgart, N.F.,56, 165 p, StuttgartGoogle Scholar
  10. Byers, C.W. (1977): Biofacies patterns in euxinic basins: a general model.—Soc. Econ. Paleont. Min. Spec. Publ.,25, 5–17, TulsaGoogle Scholar
  11. Cragg, B.A., Harvey, S.M., Fry, J.C., Herbert, R.A. &Parkes, R.J. (1992): Bacterial Biomass and Activity in the Deep Sediment Layers of the Japan Sea, Hole 798B-Leg 128.—Proc. ODP, Sci. Res.,127/128, 761–776, College StationGoogle Scholar
  12. Davies, G.R. (1970): Algal laminated sediments, Gladstone embayment, Shark Bay, Western Australia.—In:Logan, B.W., Davies, G.R., Read, J.F. & Cebulski, D.E. (eds.): Sedimentation and environment, Shark Bay, Western Australia.—Amer. Ass. Petrol. Geol., Mem.,13, 169–205, TulsaGoogle Scholar
  13. De Graciansky, P.C., Lemoine, M. & Tricart, P. (1988): Mesozoic Passive Margin of the Tethyan Ocean in the French Western Alps.—AAPG Mediterranean Basins Conference, Field Trip Guide #1, 53 p, Nice.Google Scholar
  14. Delamette, M. (1990): Aptian, Albian and Cenomanian microbialites from the condensed phosphatic deposits of the Helvetic shelf, Western Alps.—Eclogae geol. Helv.,83, 99–121, BaselGoogle Scholar
  15. Dromart, G. (1989): Deposition of Upper Jurassic fine grained limestones in the western Subalpine Basin, France.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,69, 23–43, AmsterdamCrossRefGoogle Scholar
  16. Dullo, W.-Chr., Moussavian, E. &Brachert, Th. (1990): The foralgal crust facies of the deeper fore reefs in the Red Sea: A deep diving survey by submersible.—Geobios,23, 261–281 LyonGoogle Scholar
  17. Elder, R.L. &Smith, G.R. (1984): Fish taphonomy and paleoecology.— Geobios, Mém. Spec.,8, 287–291, LyonGoogle Scholar
  18. — & — (1988): Fish taphonomy and environmental inference in paleolimnology.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,62, 577–592, AmsterdamCrossRefGoogle Scholar
  19. Flügel, E. (1982): Microfacies analysis of limestones.—633 p, Berlin (Springer)Google Scholar
  20. Folk R.L., Chafetz, H.S. &Tiezzi, P. (1985): Bizarre Forms of Depositional and Diagenetic Calcite in Hot-Spring Travertines, Central Italy.—Soc. Econ. Paleont. Min. Spec. Publ.,36, 349–369, TulsaGoogle Scholar
  21. Gaetani, M., Fois, E., Jadoul, F. &Nicora, A. (1981): Nature and evolution of Middle Triassic carbonate buildups in the Dolomites (Italy).—Mar. Geol.,44, 25–27, AmsterdamCrossRefGoogle Scholar
  22. Garett, P. (1970): Phanerozoic stromatolites: Noncompetitive ecologic restriction by grazing and burrowing animals.—Science,169, 171–173, WashingtonCrossRefGoogle Scholar
  23. Glover, E.D. (1961): Method of solution calcareous materials using the complexing agent, EDTA.—J. Sed. Petr.,31, 622–626, TulsaGoogle Scholar
  24. Golubic, S., Friedmann, I. &Schneider, J. (1981): The Lithobiontic Ecological Niche, with Special Reference to Microorganisms.— J. Sed. Petr.,51, 475–478, LawrenceGoogle Scholar
  25. Grötsch, J. &Flügel, E. (1992): Facies of Sunken Early Cretaceous Atoll Reefs and their Capping Late Albian Drowning Succession (Northwestern Pacific).—Facies,27, 153–174, ErlangenCrossRefGoogle Scholar
  26. Grotzinger, J.P. (1986): Evolution of Early Proterozoic passivemargin carbonate platform, Rocknest Formation, Wopmay orogen, Northwest Territories, Canada.—J. Sed. Petr.,56, 831–847, TulsaGoogle Scholar
  27. Hoffman, P. (1974): Shallow and deep-water stromatolites in Lower Proterozoic platform-to-basin facies change, Great Slave Lake, Canada.—Amer. Ass. Petrol. Geol., Bull,58, 856–867, TulsaGoogle Scholar
  28. Huckriede, R. (1971): Rhyncholithen-Anreicherung (Oxfordium) an der Basis des Älteren Radiolarits der Salzburger Kalkalpen.— Geologica et Palaeontologica,5, 131–147, MarburgGoogle Scholar
  29. Hurley, N.F. &Van Der Voo, R. (1990): Magnetostratigraphy, Late Devonian iridium anomaly, and impact hypotheses.— Geology,18, 291–294, BoulderCrossRefGoogle Scholar
  30. Ingle, J.C., Suyehiro, K., von Breymann, M.T. &Shipboard Scientific Party (1990): Site 798.—Proc. ODP, Init. Repts.,128, 121–236, College StationGoogle Scholar
  31. Jenkyns, H.C. (1971): The Genesis of Condensed Sequences in the Tethyan Jurassic.—Lethaia,4, 327–352, OsloGoogle Scholar
  32. Jordan, R. &Schmidt-Kaler, H. (1985): Der obere Lias (Toarcium) in Südfranken aufgrund neuer Bohrungen.—Geol. Jb., A84, 55–101, HannoverGoogle Scholar
  33. Kauffman, E.G. (1981): Ecological Reappraisal of the German Posidonienschiefer (Toarcian) and the Stagnant Basin Model. —In:Gray, J. (ed.): Communities of the past.—311–381, StroudsbourgGoogle Scholar
  34. Keupp, H. &Arp, G. (1990): Aphotische Stromatolithe aus dem süddeutschen Jura (Lias, Dogger).—Berliner geowiss. Abh. A,124, 3–33, BerlinGoogle Scholar
  35. Keupp, H. &Ilg, A. (1989): Die kalkigen Dinoflagellaten im Ober-Callovium und Oxfordium der Normandie/Frankreich. —Berliner geowiss. Abh. A,106, 165–205, BerlinGoogle Scholar
  36. Kieslinger, A. (1964): Die nutzbaren Gesteine Salzburgs—436 p., Salzburg (Bergland-Buch)Google Scholar
  37. Krajewski, K.P. (1981): Pelagiczne stromatolity z wapieni albu wierchorvego Tatr.—Kwart. Geol.,25, 731–759, WarszawaGoogle Scholar
  38. Krumbeck, L. (1943): Zur Stratigraphie und Faunenkunde des Lias zeta in Nordbayern, Teil 1.—Z. dtsch. geol. Ges.,95, 279–340, BerlinGoogle Scholar
  39. Krystyn, L. (1971): Stratigraphie, Fauna und Fazies der Klausschichten (Aalenium-Oxford) in den Östlichen Nordalpen.— Verh. Geol. B.-A.,1971, 486–509, WienGoogle Scholar
  40. Land, L.S. &Moore, C.H. (1980): Lithification, micritization and syndepositional diagenesis of biolithites on the Jamaican island slope.—J. Sed. Petr.,50, 357–370, TulsaGoogle Scholar
  41. Maslov, V.P. (1960): Stromatolity (ick genezis, metodizucheniya, svjaz's fatsiyami i geologicheskoe znachenie na primere Ordovika Sibirskoj Platformy).—Trudy Geol. Inst., vyp.,41, MoskvaGoogle Scholar
  42. Massari, F. (1981): Cryptalgal fabrics in the Rosso Ammonitico sequences of the Venetian Alps.—In:Farinacci, A. &Elmi, S. (eds.): Rosso Ammonitico Symposium Proceedings.—435–469, Rom (Edizioni Tecnoscienzia)Google Scholar
  43. Mauritsch, H.J. &Frisch, W. (1980): Paleomagnetic results from the Eastern Alps and their comparison with data from the Southern Alps and the Carpathians.—Mitt. österr. geol. Ges.,73, 5–13, WienGoogle Scholar
  44. Meyer, R.K.F. & Schmidt-Kaler, H. (1992): Wanderungen in der Erdgeschichte (5). Durch die Fränkische Schweiz.—169 p, München (Pfeil)Google Scholar
  45. Monty, M.C. (1973): Les nodules de manganese sont des stromatolithes oceaniques.—C. R. Acad. Sc. Paris, Serie. D,276, 3285–3288, ParisGoogle Scholar
  46. Myrow, P.M. &Coniglio, M. (1991): Origin and Diagenesis of Cryptobiontic Frutexites in the Chapel Island Formation (Vendian to Early Cambrian) of Southeast Newfoundland, Canada.—Palaios,6, 572–585, LawrenceGoogle Scholar
  47. Peitgen, H.-O. (1988): Fantastic Deterministic Fractals.—In:Peitgen, H.-O. &Saupe, D. (eds.): The Science of Fractal Images.—169–218, New York (Springer)Google Scholar
  48. Pentecost, A. (1990): The formation of travertine shrubs: Mammoth Hot Springs, Wyoming.—Geol. Mag.,127, 159–168, LondonCrossRefGoogle Scholar
  49. Playford, P.E., Cockbain, A.E., Druce, E.C. &Wray, J.L. (1976): Devonian stromatolites from the Canning Basin, Western Australia.—Developments in Sedimentology,20, 543–564, AmsterdamCrossRefGoogle Scholar
  50. Pober, E. &Faupl, P. (1988): The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps.—Geolog. Rdsch.,77, 641–670, StuttgartCrossRefGoogle Scholar
  51. Pratt, B. (1982): Stromatolite decline—A reconsideration.— Geology,10, 512–515, BoulderCrossRefGoogle Scholar
  52. Prauss, M., Ligouis, B. & Luterbacher, H. (1991): Organic matter and palynomorphs in the ‘Posidonienschiefer’ (Toarcian, Lower Jurassic) of southern Germany.—In:Tyson, R.V. & Pearson, T.H. (eds.): Modern and Ancient Continental Shelf Anoxia.— 335–351, LondonGoogle Scholar
  53. Reiss, Z. &Hottinger, L. (1984): The Gulf of Aqaba-Ecological micropaleontology.—354p., Berlin (Springer)Google Scholar
  54. Riding, R. (1991a): Classification of Microbial Carbonates.—InRiding, R. (ed.): Calcareous Algae and Stromatolites.—21–51, Berlin (Springer)Google Scholar
  55. — (1991b): Calcified Cyanobacteria.—InRiding, R. (ed.): Calcareous Algae and Stromatolites.—55–87, Berlin (Springer)Google Scholar
  56. Riding, R. &Voronova, L. (1982): Recent freshwater oscillatoriacean analogue of the Lower Palaeozoic calcareous algaAngulocellularia.—Lethaia,15, 105–114, OsloGoogle Scholar
  57. Rieber, H. (1973): Fauna und Stratigraphie einer oolithischen Kalkbank aus dem Toarcium von Gipf (Kanton Aargau, Schweiz).—Eclogae geol. Helvetiae,66, 657–665, BaselGoogle Scholar
  58. Riegraf, W., Werner, G. & Lörcher, F. (1984): Der Posidonienschiefer, Biostratigraphie, Fauna und Fazies des südwestdeutschen Untertoarciums (Lias epsilon).—195 p, StuttgartGoogle Scholar
  59. Ruttner, A. (1980): Bericht 1979 über ergänzende Begehungen westlich Gaming und südlich Lunz am See auf Blatt 71 Ybbsitz.— Verh. Geol. B.-A.,1980, A45-A47, WienGoogle Scholar
  60. Schäfer, P. (1979): Fazielle Entwicklung und palökologische Zonierung zweier obertriadischer Riffstrukturen in den nördlichen Kalkalpen (Oberrhät-Riff-Kalke, Salzburg).—Facies,1, 3–245, ErlangenCrossRefGoogle Scholar
  61. Schlager, W. &Schöllnberger, W. (1974): Das Prinzip der stratigraphischen Wenden in der Schichtenfolge der Nördlichen Kalkalpen.—Mitt. Geol. Ges. Wien,66/67, 165–193, WienGoogle Scholar
  62. Schröder, B. (1968): Erläuterungen zur geologischen Karte von Bayern 1∶25 000 Blatt Nr. 6332 Erlangen-Nord.—München (Geol. Landesamt)Google Scholar
  63. Seilacher, A. (1982): Posidonia shales (Toarcian, S. Germany)-stagnant basin model revalidated.—In:Montanaro Gallitelli, E. (ed.): Proc. 1st int. meeting on palaeontology, essential of historical geology, Venice, 25–55, ModenaGoogle Scholar
  64. Seilacher, A. & Westphal, F. (1971): ‘Fossil-Lagerstätten’.—InMüller, G. (ed.): Sedimentology of parts of Central Europe, Guidebook.—Internat. Sedimentol. Congress 8, 327–335, FrankfurtGoogle Scholar
  65. Smith, A.G. &Briden, J.C. (1977): Mesozoic and Cenozoic Paleocontinental Maps.—63 p, Cambridge (Cambridge University Press)Google Scholar
  66. Stone Soup Group (1991): Fractint, Version 16.12 (public domain software).-Google Scholar
  67. Stoyan, D. &Stoyan, H. (1992): Fraktale, Formen, Punktfelder. Methoden der Geometrie-Statistik.—394 p, Berlin (Akademie Verlag)Google Scholar
  68. Szulczewski, M. (1963): Stromatolites from the high-tatric Bathonian of the Tatra Mountains.—Acta Geol. Pol.,13, 125–141, WarschauGoogle Scholar
  69. Tollmann, A. (1976): Analyse des klassischen Mesozoikums. Stratigraphie, Fauna und Fazies der Nördlichen Kalkalpen.— Bd. 2, 580 p, Wien (Deuticke)Google Scholar
  70. — (1977): Geologie von Österreich. Band 1, Die Zentralalpen.— 766 p, Wien (Deuticke)Google Scholar
  71. Trauth, F. (1922): Über die Stellung der ‘pienidischen Klippenzone’ und die Entwicklung des Jura in den niederösterreichischen Voralpen.—Mitt. Geol. Ges. Wien,14/2, 105–265, WienGoogle Scholar
  72. Tsien, H.H. (1979): Paleoecology of Algal-Bearing Facies in the Devonian (Couvinian to Frasnian) Reef Complexes of Belgium. —Palaegeogr., Palaeoclim., Palaeoecol.,27, 103–127, AmsterdamCrossRefGoogle Scholar
  73. Urlichs, M. (1971): Alter und Genese des Belemnitenschlachtfeldes im Toarcien von Franken.—Geol. BI. NO-Bayern,21, 65–83, ErlangenGoogle Scholar
  74. Vecsei, A., Frisch, W., Pirzer, M. &Wetzel, A. (1989): Origin and Tectonic Significance of Radiolarian Chert in the Austroalpine Rifted Continental Margin.—inHein, J.R. &Obradovic, J. (eds.): Siliceous Deposits of the Tethys and Pacific Regions.—65–80, New York (Springer)Google Scholar
  75. Walter, M.R., Awramik, S.M. (1979): Frutexites from stromatolites of the Gunflint Iron Formation of Canada, and its biological affinities.—Precambrian Research,9, 23–33, AmsterdamCrossRefGoogle Scholar
  76. Wendt, J. (1970): Stratigraphische Kondensation in triadischen und jurassischen Cephalopodenkalken der Tethys.—N. Jb. Geol. Pal. Mh.,1970, 433–449, StuttgartGoogle Scholar
  77. Winterer, E.L. &Bosellini, A. (1981): Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy.—Amer. Ass. Petrol. Geol., Bull.,65, 394–421, TulsaGoogle Scholar
  78. Zeiss, A. (1984): The Lower Jurassic of Central and Southern Franconia.—Int. Symp. Jurassic Stratigr., Guide Book, 46–53, ErlangenGoogle Scholar
  79. Ziegler, P.A. (1988): Evolution of the Arctic-North Atlantic and the Western Tethys.—Amer. Ass. Petrol. Geol., Mem.,43, 198 p, TulsaGoogle Scholar

Copyright information

© Institut für Palaentologie, Universitat Erlangen 1993

Authors and Affiliations

  • Florian Böhm
    • 1
  • Thomas C. Brachert
    • 2
  1. 1.Institut für PaläontologieUniversität ErlangenErlangen
  2. 2.Institut für Geowissenschaften-PaläontologieUniversität MainzMainz

Personalised recommendations