, Volume 28, Issue 1, pp 109–113 | Cite as

Bioeroders in fossil reefs

  • Klaus Vogel


Boring algae, fungi and bacteria have been the most constant factor in bioerosion through earth history. Their record reaches back into the middle Precambrian. The only fossil reefs specifically researched for these microendoliths are of Triassic and Upper Jurassic age. Boring worms appear in reefs in the Lower Cambrian. Boring sponges and bivalves first appear also in the lower Paleozoic, but do not become abundant in reefs until the Triassic. Effective substrate excavating grazers are relatively young geologically: Patellids and substrate excavating Echinoids evolved in the Triassic but did not become important bioeroders until the Jurassic or Cretaceous. Scarid fishes are even younger, the oldest representatives having been found in the Miocene. Thus, it seems that the intensity of bioerosion changed significantly during earth history. This may have had consequences for diversity of reef organisms, quality and quantity of reef debris, for diagenesis and record of reef rock.


Bioerosion Reefs Endoliths Grazers Precambrian Paleozoic Mesozoic Cenozoic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Thukair, A.A. &Golubic, S. (1991): Five newHyella species from the Arabian Gulf.—Algological Studies,64, 167–197, StuttgartGoogle Scholar
  2. Bak, R.M.P. (1990): Patterns of echinoid bioerosion in two pacific coral reef lagoons.—Mar. Ecol. Progr. Ser.66, 267–272, HalstenbekGoogle Scholar
  3. Bellwood, D.R. &Choat, J.H. (1990): A functional analysis of grazing in parrot fishes (family Scaridae): the ecological implications.—Environm. Biol. Fishes,28, 189–214, The HagueCrossRefGoogle Scholar
  4. Bellwood, D.R. &Choat, J.H. (1991): Reef fishes: their history and evolution.—In:Sale, P.F. (ed.): The ecology of fishes on coral reefs: 39–66, San diego (Academic Press)Google Scholar
  5. Bonem, R.M. (1977): Comparison of cavities and cryptic biota in modern reefs with those developed in Lower Pennsylvanian (Morrowan) bioherms.—Proc. 3rd Internat. Coral Reef Symp., Miami,1, 75–80, MiamiGoogle Scholar
  6. Bromley, R.G. (1975): Comparative analysis of fosil and recent echinoid bioerosion.—Paleontology,18, 725–739, TulsaGoogle Scholar
  7. Bromley, R.G. (1978): Bioerosion of Bermuda reefs.—Palaegeogr., Palaeclimatol., Paleoecol.,23, 169–197, AmsterdamCrossRefGoogle Scholar
  8. Campbell, S. (1980):Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): Implications for the evolution of the Bangiaceae (Rhodophyta).—Phycologia,19, 25–36, BostonGoogle Scholar
  9. Cherchi, A. &Schroeder, R. (1992): Ein besonderes Fosil.— Paläont. Z.,66, 9–10, StuttgartGoogle Scholar
  10. Choat, J.H. (1991): The biology of herbivorous fishes on coral reefs.—In:Sale, P.F. (ed.): The ecology of fishes on coral reefs: 120–155, San Diego (Academic Press)Google Scholar
  11. Conell, J.H. (1978): Diversity in tropical rain forests and coral reefs.—Science199, 1302–1310, WashingtonCrossRefGoogle Scholar
  12. Elias, R.J. (1980): Borings in solitary rugose corals of the Selkird Member, Red River Formation (late Middle or Upper Ordovician), southern Manitoba.—Canad. J. Earth Sci., 17, 272–277, OttawaGoogle Scholar
  13. Fürsich, F. (1979): Genesis, environments, and ecology of Jurassic hardgrounds.—N. Jb. Geol. Paläont. Abh. 158, 1–63, StuttgartGoogle Scholar
  14. Ginsburg, R. &Schroeder, J.H. (1973): Growth and submarine fossilization of algal cup reefs, Bermuda.—Sedimentology,20, 575–614, OxfordCrossRefGoogle Scholar
  15. Glaub, I. (1988): Mikrobohrspuren in verschiedenen Faziesbereichen des Oberjura Westeuropas (vorläufige Mitteilungen). —N. Jb. Geol. Paläont. Abh. 177, 135–164, StuttgartGoogle Scholar
  16. Glaub, I. & Schmidt, H. (in press): Traces of endolithic microboring organisms in Triassic and Jurassic bioherms.—Kaupia, DarmstadtGoogle Scholar
  17. Günther, A. (1990): Distribution and bathymetric zonation of shell-boring endoliths in recent reef and shelf environments: Cozumel Yucatan (Mexico).—Facies,22, 233–262, ErlangenCrossRefGoogle Scholar
  18. Gygi, R.A. (1975):Sparisoma viride (Bonnaterra), the stoplight parrotfish, amajor sediment producer on coral reefs of Bermuda. —Eclogae geol, Helvetiae,68, 327–359, BaselGoogle Scholar
  19. Hessland, I. (1949): Investigations of the Lower Ordovician of the Siljian District, Sweden, II. Lower Ordovician penetrative and enveloping algae from the Siljan district.—Bull. Geol. Inst. Univ. Uppsala,33, 409–428, UppsalaGoogle Scholar
  20. Hofmann, K. (in press): Die mikroendolithischen Spurenfossilien der borealen Oberkreide Nordwest-Europas und ihre Fazies-Beziehungen.—Geol. Jb., HannoverGoogle Scholar
  21. Hofmann, K. &Vogel, K. (1992): Endolithische Spurenfossilien in der Schreibkreide (Maastricht) von Rügen (Norddeutschland). —Z. geol. Wiss.,20, 51–65, BerlinGoogle Scholar
  22. Hutchings, P.A. (1986): Biological destruction of coral reefs. A review.—Coral Reefs,4, 239–252, BerlinCrossRefGoogle Scholar
  23. Jaanusson, V., Laufeld, S. & Skoglund, R. (1979): Lower Wenlock faunal and floral dynamics, Vattenfallet section, Gotland. —Sver. Geol. Unders., C762, 294 pp., StockholmGoogle Scholar
  24. James, N.P. &Debrenne, F. (1980): Lower Cambrian biochems: pioneer reefs of the Phanerozoic.—Acta Palaeont. Polonica,25, 655–668, WarszawaGoogle Scholar
  25. James, N.P. &Kobluk, D.R. (1978): Lower Cambrian patch reefs and associated sediments: southern Labrador, Canada.— Sedimentology25, 1–35, OxfordCrossRefGoogle Scholar
  26. James, N.P. Kobluk, D.R. &Pemberton, S.G. (1977): The oldest macroborers: Lower Cambrian of Labrador.—Science,197, 980–983, WashingtonCrossRefGoogle Scholar
  27. Kauffman, E.G. &Sohl, N.F. (1974): Structure and evolution of Antillean Cretaceous rudist frameworks.—Verh. naturforsch. Ges. Basel,84, 399–467, BaselGoogle Scholar
  28. Keupp, H., Koch, R. &Leinfelder, R. (1990): Steuerungsprozesse der Entwicklung von Oberjura-Spongiolithen Süddeutschlands: Kenntnisstand, Probleme und Perspektiven.—Facies,23, 141–174, ErlangenCrossRefGoogle Scholar
  29. Kleemann, K.H. (1980): Korallenbohrende Muschel seit dem mittleren Lias unverändert.—Beiträge Paläont. Österr.,7, 239–249, WienGoogle Scholar
  30. Kleemann, K.H. (1990): Evolution of chemically-boring Mytilidae (Bivalvia).—In:Morton, B. (ed.) The Bivalvia.—Proc. Memorial Symp.C. M. Yonge, 1986: 111–124, Hong Kong (Hong Kong Univers. Press)Google Scholar
  31. Kobluk, D.R. (1981): Lower Cambrian cavity-dwelling endolithic (boring) sponges.—Canad. J. Earth Sci.18, 972–980, OttawaGoogle Scholar
  32. Kobluk, D.R. (1981): Middle Ordovician (Chazy Group) cavitydwelling boring sponges.—Canad. J. Earth Sci.,18, 1101–1108, OttawaGoogle Scholar
  33. Kobluk, D.R., James, N.P. &Pemberton, S.G. (1978): Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the lower Paleozoic.—Paleobiology,4, 163–170, LawrenceGoogle Scholar
  34. Kuss, J. (1983): Faziesentwicklung im proximalen Intraplattform-Becken: Sedimentation, Palökologie und Geochemie der Kössener Schichten (Ober-Trias), Nördliche Kalkalpen).— Facies,9, 61–172, ErlangenCrossRefGoogle Scholar
  35. Lang, B. (1989): Die Schwamm-Biohermfazies der Nördlichen Frankenalb (Urspring; Oxford, Malm): Mikrofazies, Palökologie, Paläontologie.—Facies,20, 199–274, ErlangenCrossRefGoogle Scholar
  36. May, J., Macintyre, G. & Perkins, R. (1982): Distribution of microborers within planted substrates along a Barrier Reef transect, Carrier Bow Cay, Belize.—InRützler, K. & Macintyre, G. (eds.): The Atlantic Barrier Reef ecosystem at Carrie Bow Cay, Belize, I: Structure and Communities.—Smiths Contr. Marine Sci.,12, 93–107, WashingtonGoogle Scholar
  37. Nield, E. W. (1984): The boring of Silurian Stromatoporoids— towards an understanding of larval behaviour in theTrypanites organisms.—Palaeogeogr., Palaeoclimatol., Palaeocol.,48, 229–243, AmsterdamCrossRefGoogle Scholar
  38. Oschmann, W. (1989): Growth and environmental hazards of the Upper Jussaric colonial coralActinastrea matheyi (Koby) from Portugal.—Paläont. Z.,63, 193–205, StuttgartGoogle Scholar
  39. Palmer, F. (1982): Cambrian to Cretaceous changes in hardground communities.—Lethaia, 15, 308–323, OsloGoogle Scholar
  40. Pemberton, S.G., Jones, B. &Edgecombe, G. (1988): The influence ofTrypanites in the diagenesis of Devonian stromatoporoids. J. Paleont.,62, 22–31, LawrenceGoogle Scholar
  41. Perkins, R. &Tsentas (1976): Microbial infestation of carbonate substrates planted on the St. Croix shelf, West Indies.—Bull. Geol. Soc. Amer.,87, 1615–1628, BoulderCrossRefGoogle Scholar
  42. Philip, J. (1970): Les formations calcaires à Rudistes du Crétacé supérieur provençal et rhodanien.—Thése État. Univ. Aix-Marseille, 438 pp., MarseilleGoogle Scholar
  43. Philip, J. (1972): Paleoécologie des formations à rudistes du Crétacé supérieur—l'example du sud-est de la France.— Paleogeogr., Paleoclimat., Paleoecol.,12, 205–222, AmsterdamCrossRefGoogle Scholar
  44. Pickerill, R.K. &Harland, T.L. (1984): Middle Ordovician micro-borings of probable sponge origin from Eastern Canada and Southern Norway.—J. Paleont.58, 885–891, TulsaGoogle Scholar
  45. Pisera, A. (1987): Boring and nestling organisms from Upper Jurassic coral colonies from Northern Poland.—Palaeontologica,32, 83–104, WarszawaGoogle Scholar
  46. Pleydell, S.M. &Jones, B. (1988): Boring of various faunal elements in the Oligocene-Miocene Bluff formation of Grand Cayman, British West Indies.—J. Paleont.,62, 348–367, LawrenceGoogle Scholar
  47. Pojeta, J. &Palmer, T.J. (1976): The origin of rock boring in mytilacean pelecypods.—Alcheringa,1, 167–179, AdelaideGoogle Scholar
  48. Radtke, G. (1991): Die mikroendolithischen Spurenfossilien im Alttertiär West-Europas und ihre palökologische Bedeutung.— Courier Forsch. Inst. Senckenberg,138, 1–185, FrankfurtGoogle Scholar
  49. Reitner, J. &Keupp, H. (1991): The fossil record of the haplosclerid excavating spongeAka De Laubenfels.—In:Reitner, H. &Keupp, H. (eds.): Fossil and recent sponges: 102–120, Berlin (Springer)Google Scholar
  50. Rowland, S.M. &Gangloff, R.A. (1988): Structure and paleoecology of Lower Cambrian reefs.—Palaios,3, 111–135, Ann ArborGoogle Scholar
  51. Runnegar, B. (1985): Early Cambrian endolithic algae.— Alcheringa, 9, 179–182, AdelaideCrossRefGoogle Scholar
  52. Runnegar, B., Pojeta, J., Taylor, M.E. &Collins, D. (1979): New species of the Cambrian and Ordovician chitonsMatthevia andChelodes from Wisconsin and Queensland: evidence for the early history of polyplacophoran mollusks.—J. Paleont.,53, 1374–1394, TulsaGoogle Scholar
  53. Schäfer, P. (1979): Fazielle Entwicklung und palökologische Zonierung zweier obertriadischer Riffstrukturen in den Nördlichen Kalkalpen (‘Oberrhät’-Riffkalke), Salzburg).—Facies,1, 3–245 ErlangenCrossRefGoogle Scholar
  54. Schmidt, H. (1992): Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich, bathymetrische Interpretation).—Frankfurter geowiss. Arb., A.12, 228 S., Frankfurt a. M.Google Scholar
  55. Smith, A. (1984): Echinoid paleobiology.—Spec. Topics in Palaeont., 190 pp. London (Allen & Unwin)Google Scholar
  56. Stanley, G.D. (1979): Paleoecology, structure, and distribution of Triassic coral buildups in Western North America.—Univ. Kansas Paleont. Inst.,65, 1–58, LawrenceGoogle Scholar
  57. Stanton, R.J. Jr. &Flügel, E. (1989): Problems with reef models: The Late Triassic Steinplatte ‘reef’ (Northern Alps, Salzburg/Tyrol, Austria).—Facies,20, 1–138, ErlangenCrossRefGoogle Scholar
  58. Steneck, R.S. (1983): Escalating herbivory and resulting adaptive trends in calcareous algal crusts.—Paleobiology,9, 44–61, LawrenceGoogle Scholar
  59. Vogel, K., Golubic, S. &Brett, C.E. (1987): Endolith associations and their relation to facies distribution in the Middle Devonian of New York State, U.S.A.—Lethaia,20, 263–290, OsloGoogle Scholar
  60. Voigt, E. (1977): On grazing traces produced by the radula of fossil and recent gastropods and chitons.—In:Crimes, T.P. &Harper, J. (eds.). Trace Fossils 2, 335–347, Liverpool (Seel House Press)Google Scholar
  61. Wagenplast, P. (1972): Ökologische Untersuchung der Fauna aus Bank- und Schwammfazies des Weißen Jura der Schwäbischen Alb.—Arb. Inst. Geol. Univ. Stuttgart, N.F.,67, 1–99, StuttgartGoogle Scholar
  62. Warme, J.E. (1975): Borings as trace fossils and the processes of marine bioerosion.—In:Frey, R.W. (ed.): The study of trace fossils: 181–229, Berlin (Springer)Google Scholar
  63. Warme, J.E. (1977): Carbonate borers—their role in reef ecology and preservation.—Amer. Ass. Petrol. Geol., Stud. Geol.,4, 261–279, TulsaGoogle Scholar
  64. Warme, J.E. &McHuron, E.J. (1987): Marine borers: Trace fossils and geological significance.—Trace fossil concepts,Semp Short Course, No.5, 67–118, Oklahoma CityGoogle Scholar
  65. West, R.R. (1988): Temporal changes in Carboniferous reef mound communities.—Palaios,3, 152–169, Ann ArborGoogle Scholar
  66. Wilson, M.A. (1986): Coelobites and spatial refuges in a lower Cretaceous cobble-dwelling hardground fauna.—Palaeontology,29, 691–703, LondonGoogle Scholar
  67. Zhang, Y. &Golubic, S. (1987): Endolithic microfossils (Cyanophyta) from early Proterozoic Stromatolites, Hebei, China.—Acta micropalaeont. sin.,4, 1–12, BeijingGoogle Scholar

Copyright information

© Institut für Palaentologie, Universitat Erlangen 1993

Authors and Affiliations

  • Klaus Vogel
    • 1
  1. 1.Geologisch-Paläontologisches InstitutJ.W. Goethe-UniversitätFrankfurt a.M.

Personalised recommendations