Skip to main content
Log in

Similarity of hf discharges as active media of gas lasers: Compact CO2 lasers with high-frequency excitation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Experimental data on compact CO2 lasers excited by high-frequency and dc discharges stabilized by a transverse magnetic field are analyzed. On the basis of the known dc analogy of a high-frequency discharge and the less known analogy between these two discharges, the possibility of scaling the laser parameters for these methods of pumping the active medium is demonstrated. It is shown that, in this case, the similarity transformations of the plasma parameters are determined from the scale invariance of kinetic Boltzmann's equation for all types of particles and lead, in particular, to strict invariance of gas temperatures in such discharges, which is a deciding factor for high-power lasers. Other similarity invariants of the discharges under consideration alone were also derived; these invariants make it possible to perform a physical simulation of these discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Rukhadze, N. N. Sobolev, and V. V. Sokovikov,Usp. Fiz. Nauk,161, 195 (1991).

    Google Scholar 

  2. A. von Engel,Ionized Gases, Clarendon, Oxford (1955).

    MATH  Google Scholar 

  3. G. Francis,Ionization Phenomena in Gases, Butterworths, London (1960).

    MATH  Google Scholar 

  4. S. Pfau, A. Rutscher, and K. Wojaczek,Beitr. Plasmaphysik,9, 333 (1969).

    Google Scholar 

  5. I. E. Tamm, in:Plasma Physics and the Problem of Controlled Thermonuclear Reactions [in Russian], Izd. Akad. Nauk SSSR, Moscow (1958), Vol. 1.

    Google Scholar 

  6. Yu. P. Raizer,Physics of Gas Discharge [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  7. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko,Capacitive High-Frequency Discharge: Physics, Experiments, and Applications [in Russian], Nauka, Moscow (1995).

    Google Scholar 

  8. J. A. Macken, US Patent No. 4,755,999 (July 5, 1988); “Compact diffusion-cooled CO2 laser”, CLEO'88, Paper FD3;IEEE J. Quantum Electron.,24, 1695 (1989).

    Google Scholar 

  9. H. J. J. Seguin,IEEE J. Quantum Electron.,30, 1868 (1994).

    Article  ADS  Google Scholar 

  10. X. S. Zhang, H. J. Baker, and D. R. Hall,J. Phys. D: Appl. Phys.,26, 359 (1993); P. P. Vitruk, H. J. Baker, and D. R. Hall,IEEE J. Quantum Electron.,30, 1623 (1994).

    Article  ADS  Google Scholar 

  11. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1954).

    MATH  Google Scholar 

  12. A. A. Gukhman,Application of the Theory of Similarity to Study of the Processes of Heat and Mass Exchange: Transport in a Moving Medium [in Russian], Vysshaya Shkola, Moscow (1974).

    Google Scholar 

  13. C. E. Muehe,J. Appl. Phys.,45, 82 (1974).

    Article  ADS  Google Scholar 

  14. S. S. Kutateladze,Analysis of Similarity and Physical Models [in Russian], Nauka, Novosibirsk (1987).

    Google Scholar 

  15. H. Margenau,Phys. Rev. 73, 326 (1948).

    Article  ADS  MATH  Google Scholar 

  16. V. L. Granovskii,Electric Current in a Gas [in Russian], GITTL, Moscow (1952), Vol. 1.

    Google Scholar 

  17. D. R. Hall and C. A. Hill, in: P. K. Cheo and M. Dekker (Eds.)Handbook of Molecular Lasers, (1987).

  18. A. T. Mirzaev, M. M. Mirinoyatov, and V. A. Stepanov,Abstracts of Papers Presented at the First Soviet-Union Conference on the Optics of Lasers [in Russian], Leningrad (1977), p. 366.

  19. K. D. Laakmann,Lasers'78 (CLEO), p. 741;Lasers'80 (CLEO), Rep. TWKK 4;CLEOS'80, Rep. TUKK 3;Lasers'81 (CLEO), Rep. THQ 2;IEEE J. Quantum Electron.,12, Pt. 2, 146 (1981).

  20. J. L. Lachambre,J. Appl. Phys.,32, 652 (1978).

    Google Scholar 

  21. G. Allock and D. R. Hall,Opt. Commun.,37, 49 (1981).

    Article  ADS  Google Scholar 

  22. D. He and D. R. Hall,Appl. Phys. Lett.,43, 726 (1983).

    Article  ADS  Google Scholar 

  23. C. A. Hill,IEEE J. Quantum Electron.,23, 1968 (1987).

    Article  ADS  Google Scholar 

  24. U. E. Hochuli,Rev. Sci. Instrum.,57, 2238 (1986);Rev. Sci. Instrum., 59, 2380 (1988).

    Article  ADS  Google Scholar 

  25. J. G. Xin,Opt. Commun.,58, 420 (1986);Appl. Phys. Lett.,51, 469 (1987).

    Article  ADS  Google Scholar 

  26. A. D. Colley, H. J. Baker, and D. R. Hall,Appl. Phys. Lett.,61, 136 (1992).

    Article  ADS  Google Scholar 

  27. D. R. Hall,CLEO-Europe'94, Rep. CML 1, p. 39; Rep. CWH 3, p. 261;Appl. Phys. Lett.,65, 2904 (1994).

  28. V. V. Sokovikov,Kratk. Soobshch. Fiz. (Bulletin of the P. N. Lebedev Phys. Inst.), No. 1-2, 29 (1993).

    Google Scholar 

  29. V. S. Petukhov,Heat Exchange and Drag in Laminar Flow of a Liquid [in Russian], Energiya, Moscow (1967).

    Google Scholar 

  30. S. S. Kutateladze,Fundamentals of Heat-Exchange Theory [in Russian], Atomizdat, Moscow (1979).

    Google Scholar 

  31. L. N. Orlov,Zh. Prikl. Spektrosk.,16, 437 (1972); N. S. Leshenyuk and L. N. Orlov,Zh. Tekh. Fiz.,43, 2382 (1973).

    Google Scholar 

  32. L. N. Orlov,Thermal Effects in Active Media of Gas Lasers [in Russian], Navuka i Tekhnika, Minsk (1991).

    Google Scholar 

  33. B. V. Alekseev, N. M. Dolgov, and V. V. Sokovikov, Preprint No. 161 of the P. N. Lebedev Physical Institute, Moscow (1975).

  34. R. Nowack,Proc. SPIE,1276, 18 (1990).

    ADS  Google Scholar 

  35. A. A. Kuznetsov, V. V. Kyun, V. G. Leont'ev, et al.,J. Russ. Laser Res.,17, 1 (1996).

    Article  Google Scholar 

  36. N. I. Lipatov,Proc. General Phys. Inst. [in Russian], Moscow (1989), Vol. 17, p. 53;Kvantovaya Élektron.,16, 938 (1989).

    Google Scholar 

  37. T. Holstein,Phys. Rev.,70, 367 (1946).

    Article  ADS  Google Scholar 

  38. W. L. Nighan,Phys. Rev. A,2 1989 (1970); R. H. Bullis,Adv. Chem. Phys.,28 423 (1975).

    Article  ADS  Google Scholar 

  39. I. P. Shkarovsky, T. W. Johnston, and M. P. Bachinski,The Particle Kinetics of Plasmas, Addison-Wesley, Reading (Mass.) (1966).

    Google Scholar 

  40. N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, in:High-Frequency Discharge in Wave Fields [in Russian], Gor'kii (1988).

  41. H. J. J. Seguin, C. E. Capjack, D. Antoniuk, and K. A. Nam,Appl. Phys. Lett.,37, 130 (1980);J. Appl. Phys.,52, 4517 (1981).

    Article  ADS  Google Scholar 

  42. H. J. J. Seguin, C. E. Capjack, D. Antoniuk, and V. A. Seguin,Appl. Phys. Lett.,39, 203 (1981);Appl. Phys. B,26, 161 (1981).

    Article  ADS  Google Scholar 

  43. D. M. Antoniuk, C. E. Capjack, and H. J. J. Seguin,J. Appl. Phys.,55, 708 (1984);Appl. Phys. B,35, 155 (1984).

    Article  ADS  Google Scholar 

  44. V. A. Seguin, H. J. J. Seguin, and C. E. Capjack,Appl. Opt.,24, 1265 (1985).

    Article  ADS  Google Scholar 

  45. R. Razdan, C. E. Capjack, and H. J. J. Seguin,J. Appl. Phys.,57, 4954 (1985);Appl. Phys. Lett.,48, 1513 (1986);Appl. Opt.,25, 2915 (1986).

    Article  ADS  Google Scholar 

  46. A. H. Labun, C. E. Capjack, and H. J. J. Seguin,J. Appl. Phys.,68, 3935 (1990).

    Article  ADS  Google Scholar 

  47. C. E. Capjack, A. H. Labun, H. J. J. Seguin, and W. D. Bilida,J. Appl. Phys.,70, 6761 (1991).

    Article  ADS  Google Scholar 

  48. R. A. Haas,Phys. Rev. A,8, 1017 (1973).

    Article  ADS  Google Scholar 

  49. W. L. Nighan and W. J. Wiegand,Phys. Rev. A,10, 922 (1974).

    Article  ADS  Google Scholar 

  50. W. P. Allis,Physica C,82, 43 (1976).

    Article  Google Scholar 

  51. E. F. Jeager, L. Oster, and A. V. Phelps,Phys. Fluids,19, 819 (1976).

    Article  ADS  Google Scholar 

  52. A. E. D. Heylen and C. L. Dargan,Int. J. Electron.,35, 433 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from a manuscript submitted September 17, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokovikov, V.V. Similarity of hf discharges as active media of gas lasers: Compact CO2 lasers with high-frequency excitation. J Russ Laser Res 21, 46–61 (2000). https://doi.org/10.1007/BF02539475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02539475

Keywords

Navigation