Skip to main content
Log in

Wave-optics applications in charged-particle-beam transport

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

An overview of electron wave-optics applications to charged-particle-beam transport is presented in the context of the thermal wave model (TWM). The quantization of the electron optics is presented both in the configuration space and in the phase space. The former provides a description in terms of the Schrödinger-like equation for a complex function whose squared modulus is proportional to the transverse density profile. The latter provides a phase-space description in terms of a von Neumann-type equation for a sort of Wigner function. The main results concerning the Gaussian electron optics, including the theory of coherent states for charged-particlle beams and the beam transport through optical devices with multipole aberrations, such as sextupoles and octupoles, are reviewed within the above wave-like framework. In particular, some investigations concerning luminosity estimates in linear colliders as well as comparisons between the TWM results and the standard tracking simulations, recently discussed in the literature, are summarized. Finally, a fresh tomographic technique to study the beam transport in both the classical-like and quantum-like domains in terms of a marginal distribution, fully similar to the one used in quantum optics, is reviewed. In particular, a comparison between the beam Wigner function and the beam marginal distribution is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Fedele and P. K. Shukla (eds),Quantum-like Models and Coherent, Effects, World Scientific, Singapore (1995).

    Google Scholar 

  2. S. De Martino, S. De Nicola, S. De Siena, R. Fedele, and G. Miele (eds.),New Perspectives in Physics of Mesoscopic Systems: Quantum-like Descriptions and Macroscopical Coherence Phenomena, World Scientific, Singapore (1997).

    Google Scholar 

  3. P. Sturrock,Static and Dynamic Electron Optics, Cambridge University Press, London (1955).

    MATH  Google Scholar 

  4. W. Glaser,Grundlangen der Elektroneoptik, Springer Verlag, Vienna (1952); O. Klemperer and M. E. Barnett,Electron Optics, Cambridge University Press, London (1955), 3rd edition; V. K. Zworykin, G. A. Morton, E. G. Ramberg, J. Hillier, and A. W. Vance,Electron Optics and Electron Microscope, John Wiley, New York (1945).

    Google Scholar 

  5. L. V. Tarasov,Physical Principle of Quantum Electronics (Optical Region) [in Russian], Sov. Radio, Moscow (1976); D. N. Nikogosyan,Kvantov. Élektron.,4, 1; 5 (1977).

    Google Scholar 

  6. J. Lawson,The Physics of Charged-Particle Beams, Clarendon Press, Oxford (1988), 2nd edition.

    Google Scholar 

  7. M. S. Livingstone and J. P. Blewett,Particle Accelerators, Mc Graw-Hill, New York (1962).

    Google Scholar 

  8. A. J. Dragt,J. Opt. Soc. Am.,72, 372 (1982);Nucl. Instr. Meth. Phys. Res. A,258, 339 (1987).

    ADS  MathSciNet  Google Scholar 

  9. P. W. Hawkes and E. Kasper,Principles of Electron Optics, Wave Optics, Academic Press, San Diego (1994), Vol. 3.

    Google Scholar 

  10. R. Jagannathan, R. Sinon, E. C. G. Sudarshan, and N. Mukunda,Phys. Lett. A134, 457 (1989); R. Jagannathan,Phys. Rev. A,42, 6674 (1990);44, 7856 (1991); “Dirac equation and electron optics” in: R. Dutt and A. K. Ray (eds.),Dirac and Feynman—Pioneers in Quantum Mechanics, Wiley Eastern, New Delhi (1993), p. 75; S. A. Khan and R. JagannathanPhys. Rev. E,51, 2510 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Jagannathan, “Dirac equation approach to spin-1/2 particle-beam optics,” in: P. Chen (ed.),Quantum Aspects of Beam Physics, World Scientific, Singapore (1999), p. 670; S. A. Khan. “Quantum theory of magnetic quadrupole lenses for spin-1/2 particles,” in: P. Chen (ed.),Quantum Aspects of Beam Physics, World Scientific, Singapore (1999), p. 682.

    Google Scholar 

  12. M. Conte and M. Pusterla,Nuovo Cim. A,103, 187 (1990); M. Conte, R. Jagannathan, S. A. Khan, and M. Pusterla,Particle Accelerators,56, 99 (1996); M. Pusterla, “Beam optics of the Dirac particle with anomalous magnetic moment,” in: S. De Martino, S. De Nicola, S. De Siena, R. Fedele, and G. Miele (eds.)New Perspectives in Physics of Mesoscopic Systems: Quantum-like Descriptions and Macroscopical Coherence Phenomena, World Scientific, Singapore (1997), p. 245.

    Google Scholar 

  13. M. A. Leontovich and V. A. Fock,Zh. Éksp. Teor. Fiz.,16, 557 (1946); M. A. Leontovich,Izv. Akad. Nauk SSSR,8, 16 (1944).

    MathSciNet  Google Scholar 

  14. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov,Sov. Phys.-Uspekhi,10, 609 (1968).

    Article  ADS  Google Scholar 

  15. Y. R. Shen,Principles of Nonlinear Optics, Wiley, New York (1984).

    Google Scholar 

  16. V. I. KarpmanNonlinear Waves in Dispersive Media, Pergamon Press, Oxford (1975).

    Google Scholar 

  17. D. Gloge and D. Marcuse,J. Opt. Soc. Am.,59, 1629 (1969).

    Article  ADS  Google Scholar 

  18. D. Marcuse,Light Transmission Optics, Van Nostrand, New York (1972).

    Google Scholar 

  19. J. A. Arnaud,Beam and Fiber Optics, Academic, New York (1976).

    Google Scholar 

  20. R. Glauber,Phys. Rev. Lett. 10, 84 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  21. J. R. Klauder,J. Math. Phys.,5, 177 (1964).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. E. C. G. Sudarshan,Phys. Rev. Lett.,10, 277 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. D. Han, Y. S. Kim, and V. I. Man'ko (eds.),Proceedings of the Second International Workshop on Squeezed States and Uncertainty Relations (Moscow, May 1992),NASA Conference Publication, Goddard Space Flight Center, Greenbelt, Maryland (1993(, Vol. NASA/CP-1993-3219.

  24. J. N. Hollenhorst,Phys. Rev. D,19, 1669 (1979).

    Article  ADS  Google Scholar 

  25. H. P. Yuen,Phys. Rev. A,13, 2226 (1976).

    Article  ADS  Google Scholar 

  26. V. V. Dodonov, I. A. Malkin, and V. I. Man'ko,Physica,72, 597 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  27. B. Yurke and D. Stoler,Phys. Rev. Lett.,57, 13 (1986).

    Article  ADS  Google Scholar 

  28. A. L. Rivera, N. M. Atakishiyev, S. M. Chumakov, and K.-B. Wolf,Phys. Rev. A,55, 876 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  29. E. Wigner,Phys. Rev.,40, 749 (1932).

    Article  ADS  MATH  Google Scholar 

  30. T. Katsonleas (ed.),Special Issue on Plasma-Based High-Energy Accelerators, IEEE Trans. Plasma Science, PS-15 88-255 (1987); S. R. Bingham, U. de Angelis, P. K. Shukla, and L., Stenflo (eds),Large Amplitude Waves and Fields in Plasmas, Proceedings of the Second Week of the Spring College on Plasma Physics (Trieste, Italy, May 1989),Phys Scr.,T-30, 3–228 (1990); R. Bingham, J. M. Dawson, T. Katsouleas and L. Stenflo (eds.),Proceedings of the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas (Kardamyli, Greece, August–September 1993),Phys. Scr.,T-52, 5–156 (1994); P. K. Shukla, R. Bingham, L. Stenflo, and J. M. Dawson (eds.),Coherent Processes in Nonlinear Media, Proceedings of the International Workshop on Plasma Physics (Trieste, Italy, October 1995),Phys. Scr.,T-63, 5–298 (1996).

  31. C. di Castro, F. Guerra, and G. Jona-Lasinio (eds.),Mesoscopic Physics and Fundamental Problems in Quantum Mechanics, Nuovo Cim. B,110 (Proc. Suppl.), 501 (1995); F. Guerra, “The problem of the interpretation of Nelson stochastic mechanics as a model for quantum mechanics”, in: S. De Martino, S. De Nicola, S. De Siena, R. Fedele, and G. Miele (eds.),New Perspectives in the Physics of Mesoscopic Systems: Quantum-like Descriptions and Macroscopical Coherence Phenomena. World Scientific, Singapore (1996), p. 133.

  32. S. I. Tzenov,Phys. Lett. A,232, 260 (1997).

    Article  ADS  Google Scholar 

  33. R. Fedele and G. Miele,Nuovo Cim. D,13, 1527 (1991).

    Article  ADS  Google Scholar 

  34. R. K. Varma,Phys. Rev. Lett.,26, 417 (1971);Phys. Rev. A,31, 3951 (1985);Mod. Phys. Lett.,9, 3653 (1994).

    Article  ADS  Google Scholar 

  35. R. Fedele, R. Poggiani, and G. Torclli, “A thermal wave model for electromagnetic traps,” in: D. M. Maletic and G. Ruggiero (eds.),Cristalline Beams and Related Issues, World Scientific, Singapore (1996) p. 393; G. Torelli, “Neutral plasma in an electromagnetic, trap,” in: S. De Martino, S. De Nicola, S. De Siena, R. Fedele, and G. Miele (eds.),New, Perspectives in the Physics of Mesoscopic Systems: Quantum-like Descriptions and Macroscopical Coherence Phenomena. World Scientific, Singapore (1996), p. 281.

    Google Scholar 

  36. R. Fedele and G. Miele,Phys. Rev. A46, 6634 (1992).

    Article  ADS  Google Scholar 

  37. R. Fedele and P. K. Shukla,Phys. Rev. A,44, 4045 (1992).

    Article  ADS  Google Scholar 

  38. S. De Nicola, R. Fedele, V. I. Man'ko, and G. Miele,Phys. Scr.,52, 191 (1995).

    Article  ADS  Google Scholar 

  39. R. Fedele, G. Miele, L. Palumbo, and V. G. Vaccaro,Phys. Lett. A,179, 407 (1993).

    Article  ADS  Google Scholar 

  40. R. Fedele, F. Galluccio, and G. Miele,Phys. Lett. A,185, 93 (1994).

    Article  ADS  Google Scholar 

  41. R. Fedele, F. Galluccio, V. I. Man'ko, and G. Miele,Phys. Lett. A,209, 263 (1995).

    Article  ADS  Google Scholar 

  42. J. Lawson, P. M. Lapostolle and R. L. Gluckstern,Particle Accelerators,5, 61 (1973).

    Google Scholar 

  43. S. Mancini, V. I. Man'ko, and P. Tombesi,Quantum Semiclass. Opt.,7, 615 (1995).

    Article  ADS  Google Scholar 

  44. G. M. D'Ariano, S. Mancini, V. I. Man'ko, and P. Tombesi,Quantum Semiclass. Opt.,8, 1017 (1996).

    Article  ADS  Google Scholar 

  45. S. Mancini, V. I. Man'ko, and P. Tombesi,Phys. Lett., A,213, 1 (1996);Found. Phys.,27, 801 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. R. Fedele and V. I. Man'ko,Phys. Scr.,T-75, 283 (1998).

    Article  Google Scholar 

  47. R. Fedele and V. I. Man'ko, “Quantum-like corrections and tomography in beam physics,” in: S. Meyers, L. Liljeby, Ch. Petit-Jean-Genaz, J. Poole, and K.-G. Rensfeldt (eds.),Proceedings of the 6th European Particle, Accelerator Conference (Stockholm, June 1998), Institute of Physics Publ., Bristol and Philadelphia (1998), p. 1268.

    Google Scholar 

  48. P. M. Lapostolle,IEEE Trans. Nucl. Sci.,NS-18, 1101 (1971).

    Article  ADS  Google Scholar 

  49. F. J. Sacherer,IEEE Trans. Nucl. Sci.,NS-18, 1105 (1971).

    ADS  Google Scholar 

  50. M. Sands, “The physics of the electron storage rings. An introduction,” in: B. Toushek (ed.),Proceedings of the International School of Physics “Enrico Fermi”, Academic Press, New York (1971), Course XLVIPhysics with Intersecting Storage Rings p. 257.

    Google Scholar 

  51. P. Ermakov,Univ. Izv. (Kiev),20, No. 9 1 (1880).

    Google Scholar 

  52. R. Fedele and V. I. Man'ko, “Quantum-like aspects of charged-particle beam dynamics,” in: P. Chen (ed.),Quantum Aspects of Beam Physics, World Scientific, Singapore (1999), p. 728.

    Google Scholar 

  53. R. Fedele, G. Miele, and L. Palumbo,Phys. Lett. A,194, 113 (1994).

    Article  ADS  Google Scholar 

  54. R. Fedele and V. G., Vaccaro,Phys. Scr.,T-52, 36 (1994).

    Google Scholar 

  55. R. Fedele, L. Palumbo, and V. G. Vaccaro, “A novel approach to the nonlinear longitudinal dynamics in particle accelerators,” in: H. Henke, H. Homeyer, and Ch. Petit-Jean-Genaz (eds.),Proceedings of the Third EPAC 92 (Berlin, March 1992), Editions Frontieres (1992), p. 762.

  56. I. A. Malkin and V. I. Man'ko,Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  57. V. V. Dodonov and V. I. Man'ko,Invariants and Evolution of Nonstationary Quantum Systems, Proceedings of the Lebedev Physical Institute Nova Science, Commack, New York (1989), Vol. 183.

  58. R. Fedele and V. I. Man'ko,Phys. Rev. E.58, 992 (1998).

    Article  ADS  Google Scholar 

  59. M. Toda, R. Kubo, and N. Saitô,Statical Physics, Springer-Verlag, Berlin (1995), end edition, Vol. 1, p. 24; M. Hyllary, F. F. O'Connell, M. D. Scully, and E. Wigner,Phys. Rep.,106, 121 (1984).

    Google Scholar 

  60. E. J. Heller,J. Chem. Phys.,67, 3339 (1977).

    Article  ADS  Google Scholar 

  61. K. Steffen, “Basic course of accelerator optics,” in: P. Bryant and S. Turner (eds.),Proceedings of the CERN Accelerator School, (Gif-sur-Yvette Paris, September 1984) CERN, Geneva (1985), Vol. 1, p. 25.

    Google Scholar 

  62. P. J. Bryant, “Betatron frequency shift due to self and image fields,” in: S. Turner (ed.),Proceedings of CERN Accelerator School, (Aarhus, Denmark, September 1986), CERN 87-10, Geneva (1987), p. 62.

  63. V. G. Vaccaro, “Present status of the theory of the electron beam instabilities in storage rings,” in: R. Bonifacio, F. Casagrande, and C. Pellegrini (eds.),Proceedings of the International Workshop on Coherent and Collective Properties, in the Interaction of Relativistic Electrons and Electromagnetic Radiation (Como, Italy, September 1984), North-Holland, Amsterdam (1985), p. 65.

    Google Scholar 

  64. S. Turner (ed.),Proceedings of CERN Accelerator School (Exeter College, Oxford, UK, April 1991), CERN 92-03, Geneva (1992).

  65. I. A. Malkin and V. I. Man'ko,Phys. Lett A,32, 243 (1970).

    Article  ADS  Google Scholar 

  66. I. A. Malkin, V. I. Man'ko, and D. A. Trifonov,Phys. Dev. D,2, 1371 (1970).

    ADS  Google Scholar 

  67. R. Fedele, G. Miele, and F. Galluccio, “A numerical check of the thermal-wave model for particle-beam dynamics,” in:Proceedings of the 1993 IEEE Particle Conference (Washington, May 1993), Vol. 1, p. 209.

  68. D. Anderson, A. Berutson, M. Lisok, M. Quiroga-Teixeiro, G. Zamanakos, R. Fedele, and G. Miele,Phys. Scr.,58, 608 (1998).

    Article  ADS  Google Scholar 

  69. F. J. Narcowich,J. Math. Phys.,10, 2502 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  70. E. D. Courant and H. S. Snyder,Ann. Phys.,3, 1 (1958).

    Article  ADS  MATH  Google Scholar 

  71. K. Husimi,Proc. Phys. Math. Soc. Jpn,22, 264 (1940).

    MATH  Google Scholar 

  72. V. V. Dodonov, A. B. Klimov, and V. I. Man'ko, “Physical effects in correlated quantum states,” in:Squeezed and Correlated States of Quantum Systems, Proceedings of the Lebedev Physical Institute, Nova Science, Commack, New York (1993), Vol. 205, p. 61.

  73. V. I. Man'ko and R. V. Mendes, “Noncommutative time-frequency tomography of analytic signals,” Eprint LANL Physics/9712022 Data Analysis, Statistics, and Probability;Phys. Lett. A,263, 53 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. V. I. Man'ko, M. Moshinsky, and A. Sharma,Phys. Rev. A,59, 1809 (1999).

    Article  ADS  Google Scholar 

  75. Olga Man'ko and V. I. Man'koJ. Russ. Laser Res.,18, 407 (1997).

    Google Scholar 

  76. See for example, A. H. Φrensen, “Intrabeam Scattering,” in: M. Dienes, M. Month, and S. Turner (eds.),Frontieres of Particle Beams: Intensity Limitations, Springer-Verlag, Berlin (1992).

    Google Scholar 

  77. H. Risken,The Fokker-Planck Equation, Springer-Verlag, Berlin, (1989), 2nd edition.

    MATH  Google Scholar 

  78. R. Fedele and M. A. Man'ko, “Optical applications for charged-particle beams in classical-like and quantum-like domains,”Quantum and Semiclass. Opt. (1999, in press).

  79. K. Vogel and H. Risken,Phys. Rev. A,40, 2847 (1989).

    Article  ADS  Google Scholar 

  80. D. T. Smithey, M. Beck M. G. Raymer, and A. Faridani,Phys. Rev. Lett.,70, 1244 (1993).

    Article  ADS  Google Scholar 

  81. J. von Neumann,Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932).

    MATH  Google Scholar 

  82. K. E. Cahill and R. J. Glauber,Phys. Rev.,177, 1882 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedele, R., Man'ko, M.A. & Man'ko, V.I. Wave-optics applications in charged-particle-beam transport. J Russ Laser Res 21, 1–33 (2000). https://doi.org/10.1007/BF02539473

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02539473

Keywords

Navigation