Skip to main content
Log in

Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Seven soil samples and seven groundwater samples from a site contaminated with fuel-oil were investigated using several chemical and microbiological techniques. In soil samples, 500 to 7,500 mg/kg of total hydrocarbons were found. These samples contained no n-alkanes but iso- and branched chain alkanes. No polychlorinated biphenyls could be detected. Microbiological investigations included estimations of total cell counts, viable cell counts on different media, and numbers of methylotrophic, denitrifying, sulphate reducing, anaerobic (with the exception of methanogenic organisms), and hydrocarbon degrading bacteria. Viable and hydrocarbon degrading bacteria were found in all samples. A total of 1,366 pure cultures was characterized morphologically and physiologically and identified by numerical identification using a data base of more than 4,000 reference strains. Groundwater samples were dominated by gram-negative bacteria of the generaPseudomonas, Comamonas, Alcaligenes, andAcinetobacter, which were also found in soil samples. In addition, more grampositive bacteria belonging to the generaArthrobacter, Nocardia, andBacillus could be isolated from soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appelbaum PC, Leathers DJ (1984) Evaluation of the rapid NFT system for identification of gram-negative, nonfermenting rods. J. Clin. Microbiol. 20:730–734

    CAS  PubMed  Google Scholar 

  2. Austin B, Garges S, Conrad B, Harding EE, Colwell RR, Simudu U, Taga N (1979) Comparative study of aerobic, heterotrophic bacteria flora of Chesapeake Bay and Tokyo Bay. Appl Environ Microbiol 37:704–714

    CAS  PubMed  Google Scholar 

  3. Bianchi MAG, Bianchi AJM (1982) Statistical sampling of bacterial strains and its use in bacterial diversity measurements. Microb Ecol 8:61–69.

    Article  Google Scholar 

  4. Brock TD (1987) The study of microorganisms in situ: Progress and problems. In: Ecology of microbial communities. Symposium 41. The Society for General Microbiology, Cambridge University Press, Cambridge, pp 1–17

    Google Scholar 

  5. Buchanan-Mappin JM, Wallis PM, Buchanan AG (1986) Enumeration and identification of heterotrophic bacteria in groundwater and in mountain stream. Can J Microbiol 32:93–98

    Google Scholar 

  6. Busse HJ, Auling G (1989) Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl Environ Microbiol 55:1578–1583

    CAS  PubMed  Google Scholar 

  7. Dawson CW, Sneath PHA (1985) A probability matrix for identification of vibrios. J Appl Bacteriol 58:407–423

    CAS  PubMed  Google Scholar 

  8. Deutsche Einheitsverfahren zur Wasseruntersuchung (DEV) (1971) Mikrobiologische Verfahren Gruppe K5:1–8.

    Google Scholar 

  9. De Vos P, De Ley J (1983) Intra- and intergeneric similarities ofPseudomonas andXanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509

    Article  Google Scholar 

  10. Doetsch RN (1981) Determinative methods in light microscopy. In: Manual of methods for general microbiology, American Society for Microbiology, Washington, pp 21–33

    Google Scholar 

  11. Dott W, Thofern E (1982) Qualitative und quantitative Bestimmung von Bakterienpopulationen aus aquatischen Biotopen. 2. Mitteilung: Anwendung miniaturisierter Systeme zur Identifizierung und Biotypisierung von Bakterien unter Verwendung der Vielpunktbeimpfungsmethode. Zbl Bakt Hyg B 176:189–201

    CAS  Google Scholar 

  12. Dott W, Kämpfer P (1988) Biochemical methods for automated bacterial identification and testing metabolic activities in water and wastewater. Wat Sci Technol 20:221–227

    Google Scholar 

  13. Dott W, Trampisch HJ (1983) Qualitative und quantitative Bestimmung von Bakterienpopulationen aus aquatischen Biotopen. 5. Mitteilung: Vergleichende Untersuchungen an zwei Schnellsandfiltern. Zbl Bakt Hyg B 177:141–155

    CAS  Google Scholar 

  14. Feltham RKA, Sneath PHA (1982) Construction of matrices for computer assisted identification of aerobic gram-positive cocci. J Gen Microbiol 128:713–720

    CAS  PubMed  Google Scholar 

  15. Fry JC, Zia T (1982) Viability of heterotrophic bacteria in freshwater. J Gen Microbiol 128:2841–2850

    Google Scholar 

  16. Ghiorse WC, Blackwill DL (1983) Enumeration and morphological characterization of bacteria indigenous to subsurface environments. Dev Ind Microbiol 24:213–224

    Google Scholar 

  17. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. Methods in Microbiology 5B:209–344

    Article  CAS  Google Scholar 

  18. Hill LR, Lapage SP, Bowie IS (1978) Computer assisted identification of coryneform bacteria. In: Bousfield IJ, Callely AG (eds) Coryneform bacteria. Academic Press, London, pp 181–215

    Google Scholar 

  19. Hobbie JE, Daley RJ, Jasper S (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Env. Microbiol 33:1225–1228

    CAS  Google Scholar 

  20. Holmes B, Hill LR (1985) Computers in diagnostic bacteriology, including identification. In: Goodfellow M, Jones D, Priest FG (eds) Computer assisted bacterial systematics, Academic Press, London, pp 265–287

    Google Scholar 

  21. Holmes B, Pinning CA, Dawson CA (1986) A probability matrix for the identification of gramnegative, aerobic, non-fermentative bacteria that grow on Nutrient-agar. J Gen Microbiol 132:1827–1842

    CAS  PubMed  Google Scholar 

  22. Holmes B, Dawson CA, Pinning CA (1986) A revised probability matrix for the identification of gram-negative, aerobic rod shaped fermentative bacteria. J Gen Microbiol 132:3113–3135

    CAS  PubMed  Google Scholar 

  23. Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J Bacteriol 66:24–26

    CAS  PubMed  Google Scholar 

  24. Jones JG (1987) Diversity in freshwater microbiology. In Ecology of microbial communities. Symposium 41. The Society for General Microbiology. Cambridge University Press, Cambridge, pp 235–259

    Google Scholar 

  25. Kämpfer P, Dott W (1989) Evaluation of the Titertek-NF system for identification of gramnegative nonfermentative and oxidase-positive fermentative bacteria. J Clin Microbiol 27:1201–1205

    PubMed  Google Scholar 

  26. Kämpfer P (1990) Evaluation of the Titertek-Enterobac-Automated system (TTE-AS) for identification of members of the family Enterobacteriaceae. Zbl Bakt 273:164–172

    Google Scholar 

  27. Kölbel-Boelke J, Tienken B, Nehrkorn A (1988) Microbial communities in the saturated groundwater environment. I: Methods for isolation and characterization of heterotrophic bacteria. Microb Ecol 16:17–29

    Article  Google Scholar 

  28. Kölbel-Boelke J, Anders EM, Nehrkorn A (1988) Microbial communities in the saturated groundwater environment. II: Diversity of bacterial communities in a pleistocene sand aquifer and their in vitro activities. Microb Ecol 16:31–48

    Article  Google Scholar 

  29. Langham CD, Williams ST, Sneath PHA, Mortimer AM (1989) New probability matrices for identification ofStreptomyces. J Gen Microbiol 135:121–133

    CAS  PubMed  Google Scholar 

  30. Lapage SP, Bascomb S, Willcox WR, Curtis MA (1973) Identification of bacteria by computer: General aspects and perspectives. J Gen Microbiol 77:273–299

    CAS  PubMed  Google Scholar 

  31. Logan N, Berkeley RCW (1984) Identification ofBacillus strains using the API system. J Gen Microbiol 130:1871–1882

    CAS  PubMed  Google Scholar 

  32. Olsen RA, Bakken LR (1987) Viability of soil bacteria: Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microbial Ecol 13:59–74

    Article  Google Scholar 

  33. Overbeck J, Chrost RJ (1990) Aquatic microbial ecology. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  34. Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. In: Marshall KC (ed) Advances in microbial ecology, vol. 9. Plenum Press, New York, pp 1–55

    Google Scholar 

  35. Parkes RJ (1987) Analysis of microbial communities within sediments using biomarkers. In: Ecology of microbial communities. Symposium 41. The Society of General Microbiology. Cambridge University Press, Cambridge, pp 147–177

    Google Scholar 

  36. Pfennig N, Lippert KD (1966) Über das Vitamin B12 Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:245–256

    CAS  Google Scholar 

  37. Priest FG, Alexander B (1988) A frequency matrix for probabilistic identification of some bacilli. J Gen Microbiol 134:3011–3018

    CAS  PubMed  Google Scholar 

  38. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Env Microbiol 49:1–7

    CAS  Google Scholar 

  39. Smith GA, Nickels JS, Kerger BD, Davis JD, Collins SP (1985) Quantitative characterization of microbial biomass and community structure in subsurface material: A procaryotic consortium responsive to organic contamination. Can J Microbiol 32:104–111

    Google Scholar 

  40. Sneath PHA (1979) BASIC program for identification of an unknown with presence-absence data against an identification matrix of percent positive characters. Computers and Geosciences 5:195–213

    Article  Google Scholar 

  41. Weller R, Ward DM (1989) Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl Env Microbiol 55:1818–1822

    CAS  Google Scholar 

  42. Willcox WR, Lapage SP, Bascomb S, Curtis MA (1973) Identification of bacteria by computer: Theory and programming. J Gen Microbiol 77:317–330

    CAS  PubMed  Google Scholar 

  43. Willcox WR, Lapage SP, Holmes B (1980) A review of numerical methods in bacterial identification. Ant v Leeuwenhoek 46:233–299

    Article  CAS  Google Scholar 

  44. Williams ST, Goodfellow M, Wellington EMH, Vickers JC, Alderson G, Sneath PHA, Sackin MJ, Mortimer AM (1983) A probability matrix for identification of some streptomycetes. J Gen Microbiol 129:1815–1830

    CAS  PubMed  Google Scholar 

  45. Wilson JT, McNabb JF, Blackwill DL, Ghiorse WC (1983) Enumeration and characterization of bacteria indigenous to a shallow watertable aquifer. Ground Water 21:134–142

    Article  Google Scholar 

  46. Wilson JT, McNabb JF, Wilson BH, Noonan NJ (1983) Biotransformation of selected organic pollutants in groundwater. Dev Ind Microbiol 24:225–233

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kämpfer, P., Steiof, M. & Dott, W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251 (1991). https://doi.org/10.1007/BF02539156

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02539156

Keywords

Navigation