Skip to main content
Log in

Grazing by a colourless flagellate on a green algal bloom

  • Published:
Swiss journal of hydrology Aims and scope Submit manuscript

Abstract

A dense bloom of a green algae was reduced by 97% within 5 days. This was probably caused by grazing by a colourless flagellate that increased logarithmic to high number under these days and disappeared as quickly. After this the green algae increased rapidly and mucilage lumps excreated by the flagellate was colonized by a specialistChlomydomonas.

The flagellate attack was probably enhanced by the high cell density and the physiological weakness of the green algae, due to a very low growth caused by shortage of inorganic carbon. The grazing seems to have caused an increase of inorganic nutrients that promoted the following growth of the green algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banse, E.: Cell volume, maximal growth rate of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol. Oceanogr.27, 1059–1071 (1982).

    Google Scholar 

  2. Björk-Ramberg, S.: Changes in sediment nutrient content in a subarctic lake subject to lake fertilization. Freshw. Biol.14, 157–164 (1984).

    Article  Google Scholar 

  3. Canter, H. M., and Lund, J. W. G.: Studies on plankton parasites. I. Fluctuations in the numbers ofAsterionella formosa Hass. in relation to fungal epidemics. New Phytol.47, 238–261 (1948).

    Article  Google Scholar 

  4. Curds, C. R.: Microbial interactions involving protozoa. In: Skinner, F. A., and Shewan, J. M. (eds): Aquatic Microbiology, p. 69–105. Academic Press, London 1977.

    Google Scholar 

  5. Fenchel, T.: The quantitative importance of the benthic microfauna of an arctic tundra pond. Hydrobiologia46, 445–464 (1975).

    Article  Google Scholar 

  6. Fenchel, T.: Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser.8, 211–223 (1982).

    Google Scholar 

  7. Fenchel, T.: Ecology of heterotrophic microflagellates. III. Adaptions to heterogeneous environments. Mar. Ecol. Prog. Ser.9, 25–33 (1982).

    Google Scholar 

  8. Fenchel, T.: Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser.9, 35–42 (1982).

    Google Scholar 

  9. Hellebust, J. A.: Extracellular products. In: Stewart, W. D. P. (ed.): Algal Physiology and Biochemistry, p. 838–863. Blackwell, Oxford 1984.

    Google Scholar 

  10. Holmgren, S.: Fytoplankton; Gunillajaure 1978 och 1979. Kuokkelprojektens rapport7, 59–62. Mimeographed. Institute of Limnology, Uppsala, Sweden 1980.

    Google Scholar 

  11. Jansson, M.: Abiotiska förhållanden i Gunillajaure 1977. Kuokkelprojektens rapport6, 6–23. Mimeographed. Institute of Limnology, Uppsala, Sweden 1980.

    Google Scholar 

  12. Jansson, M.: Abiotiska förhållanden i Gunillajaure 1978 och 1979. Kuokkelprojektens rapport7, 5–25. Mimeographed. Institute of Limnology, Uppsala, Sweden 1980.

    Google Scholar 

  13. Javornicky, P., and Prokesova, V.: The influence of protozoa and bacteria upon the oxidation of organic substances in water. Intern. Rev. ges. Hydrobiol.48, 335–350 (1963).

    CAS  Google Scholar 

  14. Johannes, R. E.: Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr.10, 434–442 (1965).

    Google Scholar 

  15. Lundgren, A.: Växtplanktons produktion och klorofyll i Gunillajaure 1978 och 1979. Kuokkelprojektens rapport7, 63–80. Mimeographed. Institute of Limnology, Uppsala, Sweden 1980.

    Google Scholar 

  16. Mullin, M. M., Sloan, P. R., and Eppley, R. W.: Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr.11, 307–311 (1966).

    Google Scholar 

  17. Nauwerck, A.: Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symb. bot. Upsal.17(5), 1–163 (1963).

    Google Scholar 

  18. Pringsheim, E. G.: Farblose Algen. VEB Gustav-Fischer-Verlag, Jena 1963.

    Google Scholar 

  19. Provasoli, L., and Carlucci, A. F.: Vitamines and growth regulators. In: Stewart, W. D. P. (ed.): Algal Physiology and Biochemistry, p. 741–784. Blackwell, Oxford 1974.

    Google Scholar 

  20. Ramberg, L.: Relations between phytoplankton and environment in two Swedish forest lakes. Scr. limnol. upsal.426, 1–97 (1976).

    Google Scholar 

  21. Ramberg, L.: A population dynamics model forOocystis parva (Chlorophyceae). Arch. Hydrobiol.89, 118–134 (1980).

    Google Scholar 

  22. Sherr, B. F., Sherr, E. B., and Berman, T.: Decomposition of organic detritus: A selective role for microflagellate protozoa. Limnol. Oceanogr.27, 765–769 (1982).

    Article  CAS  Google Scholar 

  23. Skuja, H.: Taxonomische und biologische Studien des Phytoplanktons schwedischer Binnengewässer. Nova Acta R. Soc. Scient. upsal. (Ser. 4),16/3, 1–400 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramberg, L. Grazing by a colourless flagellate on a green algal bloom. Schweiz. Z. Hydrol 49, 294–302 (1987). https://doi.org/10.1007/BF02538290

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02538290

Keywords

Navigation