Skip to main content
Log in

Can the redox conditions in natural waters be predicted by a single parameter?

  • Published:
Schweizerische Zeitschrift für Hydrologie Aims and scope Submit manuscript

Abstract

The thermodynamic pε (redox potential) is the theoretical master variable of the ultimate redox conditions in aqueous solutions. Real multicomponent redox processes, however, cannot be predicted by pε considerations alone. In such cases a detectable notion, the operational parameter pe, has to be introduced which is defined by the response of an adequate sensor to redoxchemical changes in natural extracellular systems. The solution/sensor interaction is described by the general theory of stationary states and, in case of Pt metal as sensor, by the electronic equilibrium of Pt in aqueous solutions. Examples of pe/D.O. feedback control experiments with sediment-water systems from L. Kinneret indicate that pe is dependent on the electron donator and the electron acceptor, thus being predictive to the real electron transfer reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Frevert, The pe redox concept in natural sediment-water systems; its role in controlling phosphorus release from lake sediments, Arch. Hydrobiol./Suppl.55 (3/4), 278 (1979).

    CAS  Google Scholar 

  2. A.J. Swallow, Hydrated Electrons in Seawater, Nature (USA.),222, 369 (1969).

    Article  CAS  Google Scholar 

  3. L.G. Sillén, The ocean as a chemical system, Science156, 1189 (1967).

    Article  PubMed  Google Scholar 

  4. C. Van Baalen and J.E. Marler, Occurrence of hydrogen peroxide in seawater, Nature211, 951 (1966).

    Article  Google Scholar 

  5. W.G. Beck, “Redox levels in the Sea”, in E.D. Goldberg, Ed., The Sea Vol.5, 153–180, Wiley-Interscience, New York 1974

    Google Scholar 

  6. J. O'M. Bockris and A.K.M.S. Huq, The mechanism of the electrolytic evolution of oxygen on platinum, Proc. Roy. Soc. (London), A 237, 277 (1956).

    Article  CAS  Google Scholar 

  7. J.H. Wang and W.S. Brinigar, Design and synthesis of a catalyst for the aerobic oxidation of cytochrome C, Natl. Acad. Sc.46, 958 (1960).

    Article  CAS  Google Scholar 

  8. R. Parsons, “The role of oxygen in redox processes in aqueous solutions”, in E.D. Goldberg, Ed., The Nature of Seawater, Dahlem workshop, Berlin, 505–522 (1975).

  9. W. Stumm, What is the pε of the Sea, Thalassia Jugoslavica (1982).

  10. A.A. Frost, Oxidation potential—free energy diagrams, J. Am. Chem. Soc.73, 2680 (1951).

    Article  CAS  Google Scholar 

  11. G.T.F. Wong, The oxidation state diagram—a potential tool for studying redox chemistry in seawater, Mar. Chem.9, 1 (1980).

    Article  CAS  Google Scholar 

  12. L. Kjaergaard, The Redox Potential: Its Use and Control in Biotechnology, Adv. Biochem. Engin.7, 131 (1977).

    Article  CAS  Google Scholar 

  13. P.L. McCarty, “Energetics of Organic Matter Degradation,” in R. Mitchell, Ed., Water Pollution Microbiology chap 5, Wiley-Interscience, New York (1972).

    Google Scholar 

  14. P. Wrona, On the interpretation of the electrode potential, J. Electroanal. Chem.102, 421 (1979).

    Article  CAS  Google Scholar 

  15. J.W.T. Wimpenny, Can culture redox potential be a useful indicator of oxygen metabolism by microorganisms? J. Appl. Chem. Biotechnol.26, 48 (1976).

    Google Scholar 

  16. A.N. Frumkin and B.B. Damaskin, Real free energy of electron solvation under conditions of equilibrium of the electrode with the solution (in Russian), Dokl. Akad. Nauk (Moskva, Chemistry section)221, 395 (1975).

    CAS  Google Scholar 

  17. H. Rickert, Einführung in die Elektrochemie fester Stoffe, Springer-Verlag, Berlin (1973)

    Google Scholar 

  18. A. De Battisti and S. Trasatti, The solubility of metals in liquid polar phases—Implications in the Calculation of the Standard Potential for the Hydrated Electron, J. Electroanal. Chem.,79, 251 (1977).

    Article  Google Scholar 

  19. H. Galster, Die Elektronenaktivität als Mass für das Redoxpotential in wässrigen Lösungen, Arch. Techn. Mess. (ATM)468 (1), 2 (1975).

    Google Scholar 

  20. M. Whitfield, The Electrochemical Characteristics of Natural Redox Cells, Limnol. Oceanogr.17(3), 383 (1972).

    Article  CAS  Google Scholar 

  21. M. Spiro, Standard exchange current densities of redox systems at platinum electrodes, Electrochim. Acta9, 1531 (1964).

    Article  CAS  Google Scholar 

  22. N. Tanaka and R. Tamamushi, Kinetic Parameters of Electrode Reactions, Electrochim. Acta9, 963 (1964).

    Article  CAS  Google Scholar 

  23. R.G. Wetzel, “Limnology”, chap.17, W. B. Saunders Co., Philadelphia (1975).

    Google Scholar 

  24. H. Galster, Natur, Messung und Anwendung der Redoxspannung, Chemie Labor Betrieb30(8), 330–335, 337–380 (1979)

    CAS  Google Scholar 

  25. M. Whitfield, Thermodynamic limitations on the use of the platinum electrode in Eh measurements, Limnol. Oceanogr.19, 857 (1974).

    CAS  Google Scholar 

  26. J. Boulègue and G. Michard, Sulfur Speciations and Redox Processes in Reducing Environments, ACS Symp. Ser. No.93 (Ed.: E.A. Jenne) (1979).

  27. K.W. Bewig and W.A. Zisman, The Wetting of Gold and Platinum by Water, J. Phys. Chem.69 (12), 4238 (1965).

    CAS  Google Scholar 

  28. H. Galster, Störungsquellen in der Bezugselektrode bei pH-Messungen, Z. Anal. Chem.245, 62 (1969).

    Article  CAS  Google Scholar 

  29. C. Serruya, “Water Chemistry”, in C. Serruya, Ed., Lake Kinneret, Dr. Junk bv Publish, The Hague (1978).

    Google Scholar 

  30. U. Tessenow, T. Frevert, W. Hofgärttner und A. Moser, Ein simultan schliessender Serienwasserschöpfer für Sedimentkontaktwasser mit fotoelektrischer Selbstauslösung und fakultativem Sedimentstecher, Arch. Hydrobiol.. Suppl.48(3/4), 438 (1977).

    CAS  Google Scholar 

  31. T. Frevert, Determination of hydrogen sulfide in saline solutions, Schweiz. Z. Hydrol.42 (2), 255 (1980).

    Article  CAS  Google Scholar 

  32. L.G.M. Baas-Becking, J.R. Kaplan and D. Moore, Limits of the natural environment in terms of pH and oxidation-reduction potentials, J. Geol.68(3), 243 (1960).

    Article  CAS  Google Scholar 

  33. H.L. Bohn, Electromotive Force of Inert Electrodes in Soil Suspension, Soil Sci. Soc. Amer. Proc.32, 211 (1968).

    Article  CAS  Google Scholar 

  34. J. Kjensmo, The redox potentials in small oligo- and meromictic lakes, Nord. Hydrol. (Copenhagen)1, 56 (1970)

    CAS  Google Scholar 

  35. A.P. Zimmermann, Electron intensity, the role of humic acids in extracellular eletron transport and chemical determination of pE in natural waters, Hydrobiologia78, 259 (1981).

    Article  Google Scholar 

  36. F. Manheim,In situ measurements of pH and Eh in natural waters and sediments, Acta Univers. Stockholm (Hoegskolan)8, 27 (1961).

    CAS  Google Scholar 

  37. A.B. Viner, The Sediments of Lake George (Uganda); I. Redox Potentials, Oxygen Consumption and Carbon Dioxide output, Arch. Hydrobiol.76, 181 (1975).

    CAS  Google Scholar 

  38. T. Frevert, Hydrochemistry of Giant Taro (Babai) Pits (Report on a project on Tarawa Atoll, Rep. of Kiribati, Central Pacific). Univ. of the South Pacific, Suva/Fiji (1983).

    Google Scholar 

  39. M. Potts and B.A. Whitton, pH and Eh on Aldabra Atoll. I. Comparison of Marine and Freshwater Environments, Hydrobiologia67(1), 11 (1979).

    Article  Google Scholar 

  40. J.E. Schindler and K.R. Honick, Oxidation-Reduction Determinations at the Mud-Water Interface, Limnol. Oceanogr.16, 837 (1971).

    CAS  Google Scholar 

  41. S. Emerson, Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters, Geochim. Cosmochim. Acta40, 925 (1976).

    Article  CAS  Google Scholar 

  42. L.D. Bailey and E.G. Beauchamp, Nitrate Reduction and Redox Potentials Measured with Permanently and Temporarily Placed Platinum Electrodes in Saturated Soils, Cand. J. Soil Sci.51, 51–58 (1971).

    Article  CAS  Google Scholar 

  43. B.T. Hargrave, Oxidation-reduction potentials, oxygen concentration and oxygen uptake of profundal sediments in an eutrophic lake, Oikos23, 167–177 (1972).

    Article  Google Scholar 

  44. W. Ostendorp and T. Frevert, Untersuchungen zur Manganfreisetzung und zum Mangangehalt der Sedimentoberschicht im Bodensee. Arch. Hydrobiol./Suppl.55(3/4), 255–277 (1979).

    CAS  Google Scholar 

  45. R.D. Delaune, G.A. Hambrick III and W.H. Patrick, Jr., Degradation of Hydrocarbons in Oxidized and Reduced Sediments, Mar. Poll. Bull.11, 103–106 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frevert, T. Can the redox conditions in natural waters be predicted by a single parameter?. Schweiz. Z. Hydrologie 46, 269–290 (1984). https://doi.org/10.1007/BF02538066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02538066

Keywords

Navigation