Cloning of the late genes in the ergosterol biosynthetic pathway ofSaccharomyces cerevisiae—A review

Abstract

Research on the ergosterol biosynthetic pathway in fungi has focused on the identification of the specific sterol structure required for normal membrane structure and function and for completion of the cell cycle. The pathway and its end product are also the targets for a number of antifungal drugs. Identification of essential steps in ergo-sterol biosynthesis could provide new targets for the development of novel therapeutic agents. Nine of the eleven genes in the portion of the pathway committed exclusively to ergosterol biosynthesis have been cloned, and their essentiality for aerobic growth has been determined. The first three genes;ERG9 (squalene synthase),ERG1 (squalene epoxidase), andERG7 (lanosterol synthase), have been cloned and found to be essential for aerobic viability since their absence would result in the cell being unable to synthesize a sterol molecule. The remaining eight genes encode enzymes which metabolize the first sterol, lanosterol, to ultimately form ergosterol. The two earliest genes,ERG11 (lanosterol demethylase) andERG24 (C-14 reductase), have been cloned and found to be essential for aerobic growth but are suppressed by mutations in the C-5 desaturase (ERG3) gene andfen1 andfen2 mutations, respectively. The remaining cloned genes,ERG6 (C-24 methylase),ERG2 (D8Æ7 isomerase),ERG3 (C-5 desaturase), andERG4 (C-24(28) reductase), have been found to be nonessential. The remaining genes not yet cloned are the C-4 demethylase and the C-22 desaturase (ERG5).

This is a preview of subscription content, log in to check access.

Abbreviations

PCR:

polymerase chain reaction

SBI:

sterol biosynthesis inhibitor

References

  1. 1.

    Goldstein, J.L., and Brown, M.S. (1990)Nature 243, 425–430.

    Article  Google Scholar 

  2. 2.

    Lees, N.D., Bard, M., Kemple, M.D., Haak, R.A., and Woods, R.A. (1979)Biochim. Biophys. Acta 553, 469–475.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Lees, N.D., Kleinhans, F.W., Broughton, M.C., Pennington, P.A., Picker, V.A., and Bard, M. (1989)Steroids 53, 567–578.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Bard, M., Lees, N.D., Burrows, L.S., and Kleinhans, F.W. (1978)J. Bacteriol. 135, 1146–1148.

    PubMed  CAS  Google Scholar 

  5. 5.

    Kleinhans, F.W., Lees, N.D., Bard, M., Haak, R.A., and Woods, R.A. (1979)Chem. Phys. Lipids 23, 143–154.

    PubMed  Article  Google Scholar 

  6. 6.

    Rottem, S., Yaskoav, J., Neeman, Z., and Razin, S. (1973)Biochim. Biophys. Acta 323, 495–508.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Lees, N.D., Lofton, S.L., Woods, R.A., and Bard, M. (1980)J. Gen. Microbiol. 118, 209–214.

    CAS  Google Scholar 

  8. 8.

    Dahl, C., Biemann, H.P., and Dahl, J. (1987)Proc. Natl. Acad. Sci. USA 84, 4012–4016.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Quesney-Huneeus, V., Wiley, M.H., and Siperstein, M.D. (1979)Proc. Natl. Acad. Sci. USA 76, 5056–5060.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Quesney-Huneeus, V., Galick, H.A., Siperstein, M.D., Erikson, S.K., Spencer, J.A., and Nelson, J.A. (1983)J. Biol. Chem. 258, 378–385.

    PubMed  CAS  Google Scholar 

  11. 11.

    Georgopapadakou, N.H., and Walsh, T.J. (1994)Science 264, 371–373.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Travis, J. (1994)Science 264, 360–362.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Davies, J. (1994)Science 264, 375–382.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Klein, R.S., Harris, C.A., Small, C.B., Moll, B., Lesser, M., and Friedland, G.H. (1994)New Engl. J. Med. 311, 554–556.

    Google Scholar 

  15. 15.

    Beyer, J., Schwartz, S., Heinemann, V., and Siegert, W. (1994)Antimicrob. Agents Chemother. 38, 911–917.

    PubMed  CAS  Google Scholar 

  16. 16.

    Jolidon, S., Polack, A.M., Guerry, P., and Hartman, P.G. (1989)Biochem. Soc. Trans. 18, 47–49.

    Google Scholar 

  17. 17.

    Marcireau, C., Guilloton, M., and Karst, F. (1990)Antimicrob. Agents Chemother. 34, 989–993.

    PubMed  CAS  Google Scholar 

  18. 18.

    Hartman, G., and Polak, A. (1993)Clin. Dermatol. 7, 27–36.

    Google Scholar 

  19. 19.

    Vanden Bossche, H., Willemsens, G., Cools, W., Cornelissen, F., Lauwers, W.F., and Van Cutsem, J. (1980)Antimicrob. Agents Chemother. 17, 922–928.

    PubMed  Google Scholar 

  20. 20.

    Lees, N.D., Broughton, M.C., Sanglard, P., and Bard, M. (1990)Antimicrob. Agents Chemother. 34, 831–836.

    PubMed  CAS  Google Scholar 

  21. 21.

    Kerridge, D. (1975)Postgrad. Med. J. 55, 653–656.

    Article  Google Scholar 

  22. 22.

    McCasker, J.H., Clemons, K.V., Stevens, D.A., and Davis, R.W. (1994)Genetics 136, 1261–1269.

    Google Scholar 

  23. 23.

    Fegueur, M., Richard, L., Charles, N.D., and Karst, F. (1991)Curr. Genet. 20, 365–372.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Jennings, S.M., Tsay, Y.H., Fisch, T.M., and Robinson, G.W. (1991)Proc. Natl. Acad. Sci. USA 88, 6038–6042.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Robinson, G.W., Tsay, Y.H., Kienzle, B.K., Smith-Monroy, C.A., and Bishop, R.W. (1993)Mol. Cell Biol. 13, 2706–2717.

    PubMed  CAS  Google Scholar 

  26. 26.

    Jandrositz, A., Turnowsky, F., and Hogenauer, G. (1991)Gene 107, 155–160.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Kelly, R., Miller, S.M., Lai, M.H., and Kirsch, D.R. (1990)Gene 87, 177–183.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Covey, E.J., Matsuda, S.P.T., and Bartel, B. (1994)Proc. Natl. Acad. Sci. USA 91, 2211–2215.

    Article  Google Scholar 

  29. 29.

    Covey, E.S., Matsuda, S.P.T., and Bartel, B. (1993)Proc. Natl. Acad. Sci. USA 90, 11628–11632.

    Article  Google Scholar 

  30. 30.

    Trocha, P.J., Jasne, S.J., and Sprinson, D.B. (1977)Biochemistry 16, 4721–4726.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Taylor, F.R., Rodriquez, F.J., and Parks, L.W. (1983)J. Bacteriol. 156, 64–68.

    Google Scholar 

  32. 32.

    Kalb, V.F., Loper, J.C., Dey, C.R., Woods, C.W., and Sutter, T.R. (1986)Gene 45, 237–245.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Kalb, V.F., Woods, C.W., Turi, T.G., Dey, C.R., Sutter, T.R., and Loper, J.C. (1987)DNA 6, 529–537.

    PubMed  CAS  Google Scholar 

  34. 34.

    Bard, M., Lees, N.D., Turi, T., Craft, D., Cofrin, L., Barbuch, R., Koegel, C., and Loper, J.C. (1993)Lipids 28, 963–967.

    PubMed  CAS  Google Scholar 

  35. 35.

    Watson, P.F., Rose, M.E., Ellis, S.W., England, H., and Kelly, S.L. (1989)Biochem. Biophys. Res. Commun. 164, 1170–1175.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Shimokawa, O., Kato, Y., and Nakayama, H. (1986)J. Med. Vet. Mycol. 24, 327–336.

    PubMed  CAS  Google Scholar 

  37. 37.

    Shimokawa, O., Kato, Y., Kawano, K., and Nakayama, H. (1989)Biochim. Biophys. Acta 1003, 15–19.

    PubMed  CAS  Google Scholar 

  38. 38.

    Marcireau, C., Guyonnet, D., and Karst, F. (1992)Curr. Genet. 22, 267–272.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Lorenz, R.T., and Parks, L.W. (1992)DNA Cell Biol. 11, 685–692.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Lai, M.H., Bard, M., Pierson, C.A., Alexander, J.F., Goebl, M., Carter, G.T., and Kirsch, D.R. (1994)Gene 140, 41–49.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Shimanuki, M., Goebl, M., Yanagida, M., and Toda, T. (1992)Mol. Biol. Cell 3, 263–273.

    PubMed  CAS  Google Scholar 

  42. 42.

    Chen, W., Capieaux, E., Balzi, E., and Goffeau, A. (1991)Yeast 7, 305–308.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Pinto, W.J., and Nes, W.R. (1983)J. Biol. Chem. 258, 4472–4476.

    PubMed  CAS  Google Scholar 

  44. 44.

    Pinto, W.J., Lozano, R., Sekula, B.C., and Nes, W.R. (1983)Biochem. Biophys. Res. Commun. 112, 47–54.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Gaber, R.F., Copple, D.M., Kennedy, B.K., Vidal, M., and Bard, M. (1989)Mol. Cell Biol. 9, 3447–3456.

    PubMed  CAS  Google Scholar 

  46. 46.

    Hardwick, K.C., and Pelham, H.R.B. (1994)Yeast 10, 265–269.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Baloch, R.I., Mercer, E.I., Wiggins, T.E., and Baldwin, B.C. (1984)Phytochemistry 23, 2219–2226.

    CAS  Article  Google Scholar 

  48. 48.

    Ashman, W.H., Barbuch, R.J., Ulbright, C.E., Jarrett, H.W., and Bard, M. (1991)Lipids 26, 628–632.

    PubMed  CAS  Google Scholar 

  49. 49.

    Arthington, B.A., Hoskins, J., Skatrud, P.L., and Bard, M. (1991)Gene 107, 173–174.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Rodriguez, R.J., Low, C., Bottema, C.D.K., and Parks, L.W. (1985)Biochim. Biophys. Acta 387, 336–343.

    Google Scholar 

  51. 51.

    Rodriguez, R.J., and Parks, L.W. (1983)Arch. Biochem. Biophys. 225, 861–871.

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Lorenz, R.T., Casey, W.M., and Parks, L.W. (1989)J. Bacteriol. 171, 6169–6173.

    PubMed  CAS  Google Scholar 

  53. 53.

    Arthington, B.A., Bennett, L.G., Skatrud, P.L., Guyra, C.J., Barbuch, R.J., Ulbright, C.E., and Bard, M. (1991)Gene 102, 39–44.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Worman, H.J., Evans, C.D., and Blobel, G. (1990)J. Cell Biol. 111, 1535–1542.

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Fukishima, H., Grimstead, G.F., and Gaylor, J.F. (1981)J. Biol. Chem. 256, 4822–4826.

    Google Scholar 

  56. 56.

    Faust, J.R., Trzaskos, J.M., and Gaylor, J.F. (1988) inBiology of Cholesterol (Yeagle, P.L., ed.), CRC Press, Boca Raton.

    Google Scholar 

  57. 57.

    Paltauf, F., Kohlwein, S.D., and Henry, S.A. (1992) inThe Molecular and Cellular Biology of the Yeast Saccharomyces (Jones, E.W., Pringle, J.R., and Broach, J.R., eds.) Vol. 2, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. D. Lees.

About this article

Cite this article

Lees, N.D., Skaggs, B., Kirsch, D.R. et al. Cloning of the late genes in the ergosterol biosynthetic pathway ofSaccharomyces cerevisiae—A review. Lipids 30, 221–226 (1995). https://doi.org/10.1007/BF02537824

Download citation

Keywords

  • Ergosterol
  • Squalene
  • Lanosterol
  • Aerobic Growth
  • Ergosterol Biosynthesis