Skip to main content
Log in

Microbial mats associated with bryozoans (Coorong Lagoon, South Australia)

  • Published:
Facies Aims and scope Submit manuscript

Summary

Bryostromatolites are laminated carbonate rocks composed of bryozoan zoarial laminae. The laminated texture is frequently caused by patterns of bryozoan self overgrowth as a regular defensive tactic against microbial fouling. In the Coorong Lagoon (South Australia), another type of bryostromatolite is present where the laminated growth of the weakly calcifying bryozoan speciesConopeum aciculata is postmortally stabilized by cyanobacterial mats at the surface, and fungal mats settling in the zooecial cavities.

A tough extracellular slime network produced by benthic cyanobacteria is a trap for sediment particles, provides a method of adhesion to the bryozoan substrate, and produces a biological lamination by the vertical stratification of dead bryozoan skeletons. These slimes are also important for the preservation of cell structures and for their fossilization.

Seasonal fluctuations in salinity and water level are the most important regional control factors, causing a phase displacement in the growth optima of microbial mats and bryozoans, thereby resulting in a rigid bryostromatolitic fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman, D.J. (1976): Fungal diseases of marine animals.—In:Jones, G. (ed.): Recent Advances in Aquatic Mycology.—223–260, London (Elek Science)

    Google Scholar 

  • Alderman, D.J. &Polglase, J.L. (1986): Are fungal diseases significant in the marine environment?—In:Moss, S.T. (ed.): The Biology of Marine Fungi.—189–198, Cambridge (Univ. Press)

    Google Scholar 

  • Anagnostidis, K. &Komarek, J. (1988): Modern approach to the classification system of cyanophytes, 3—Oscillatoriales.— Arch. Hydrobiol. Suppl.,80, 327–4722

    Google Scholar 

  • Banta, W. C. (1972): The body wall of cheilostome Bryozoa, V. Frontal budding inSchizoporella unicornis floridana.—Marine Biology,14/1, 63–71.

    Article  Google Scholar 

  • Bijma, J. &Boekschoten, G. J. (1995): Recent bryozoan reefs and stromatolite development in brackish inland lakes, SW Netherlands.—Senckenbergiana maritima,17/1–3, 163–185.

    Google Scholar 

  • Bishop, J. D. D. (1989): Colony form and the exploitation of spatial refuges by encrusting Bryozoa.—Biol. Rev.64, 197–218.

    Article  Google Scholar 

  • Bone, Y. (1991): Geological Note. Population explosion of the bryozoanMembranipora aciculata in the Coorong Lagoon in late 1989.—Australian Journal of Earth Sciences38, 121–123

    Article  Google Scholar 

  • Bone, Y. &Wass, R. E. (1990): Sub-Recent bryozoan-serpulid buildups in the Coorong lagoon, South Australia.—Australian Journal of Earth Sciences,37, 207–214

    Article  Google Scholar 

  • Bradstock, M. &Gordon, D. P. (1983): Coral-like bryozoan growths in the Tasman Bay, and their protection to conserve commercial fish stocks.—New Zealand Journal of Marine and Freshwater Research17, 159–163

    Article  Google Scholar 

  • Carter, R. M., Carter, L., Williams, J. J. & C. A. Landis (1985): Modern and Relict Sedimentation on the South Otago Continental Shelf, New Zealand.—New Zealand Oceanographic Institute93, 43 pp., Wellington

  • Cuffey, R. J. (1977): Bryozoan contribution to reefs and bioherms through geologic time.—Studies in Geology4, 181–194

    Google Scholar 

  • Cuffey, R. J. (1985): Expanded reef-rock textural classification and the geologic history of bryozoan reefs.—Geology13, 307–310

    Article  Google Scholar 

  • Cuffey, R. J. & Johnson, M. E. (1997): Bryozoan nodules built around andesite clasts from the upper Pliocene of Baja California: Paleoecological implications and closure of the Panama Isthmus.—In:Johnson, M.E. & Ledesma-Vaezquez, J. (eds.): Pliocene Carbonates and Related Facies Flanking the Gulf of California, Mexico.—Geological Society of America Special Paper318, 111–117, Boulder

  • Cummings, S. G. (1975): Zooid Regression inSchizoporella unicornis floridana (Bryozoa, Cheilostomata).—Chesapeake Science16/2, 93–103

    Article  Google Scholar 

  • Dahanayake, K. &Krumbein, W.E. (1985): Ultrastructure of a microbial mat-generated phosphorite.—Mineralium Deposita20, 260–265

    Article  Google Scholar 

  • de Hoog, G.S. (1993): Evolution of black yeast: possible adaptation to the human host.—Antonie van Leeuwenhoek63, 105–109.

    Article  Google Scholar 

  • Desikachary, T.V. (1959): Cyanophyta. I.C.A.R. Monographs on algae, 686 p., New Delhi

  • Freiwald, A. & Wilson, J. B. (in press): Taphonomy of modern deep, cold-temperate water coral reefs.—Hist. Biol., Chur

  • Geitler, G. (1932): Cyanophyceae. Rabenhorst Kryptogamen Flora 14, 1196 p., Leipzig

  • Gerdes, G. & Krumbein, W. E. (1987): Biolaminated Deposits.— Lecture Notes in Earth Sciences9, 163 pp., Berlin

  • Gordon, D. P. &Voigt, E. (1996): The kenozooidal origin of the ascophorine hypostegal coelom and associated frontal shield. —In:Gordon, D. P., Smith, A. M. &Grant-Mackie, J. A. (eds.): Bryozoans in space and time.—89–108. Wellington. (National Institute of Water & Atmospheric Research)

    Google Scholar 

  • Hibberd, S. A. (1988): The Holocene evolution and stratigraphy of the north-west Coorong lagoon, South Australia.—B.Sc. thesis, Flinders University (unpubl.).

  • Hillmer, G. & Scholz, J. (1996): Structure and Dynamics of Bryozoan Communities and Microbial Mats.—Göttinger Arbeiten zur Geologie und PaläontologieSb2: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution, 53–57, Göttingen

  • Hillmer, G., Scholz, J. &Dullo, W.-C. (1996): Two Types of Bryozoan Nodules from the Gulf of Aqaba (Red Sea).—In:Gordon, D. P., Smith, A. M. &Grant-Macki, J. A. (eds.): Bryozoans in space and time.—125–132, Wellington. (National Institute of Water & Atmospheric Research)

    Google Scholar 

  • Hillmer, G., Voigt, E. &J. Scholz (1997): Neue fungiforme Bryozoen-Genera (Cyclostomata) aus dem subherzynen Santonium und ihre Ökologie.—Vogel-Festschrift, Courier Forschungsinstitut Senckenberg201, 201–223, Frankfurt a. M.

    Google Scholar 

  • Jackson, J. B. C. (1979): Morphological Strategies of Sessile Animals.—In:Larwood, G. &Rosen, B. R. (eds.): Biology and Systematics of Colonial Organisms.—499–556, London (Academic Press).

    Google Scholar 

  • Junge, C. (1998): Bryozoen und Bryozoen-Riffstrukturen auf dem Kontinentalschelf von Otago/Neuseeland.—Diploma Thesis, University of Hamburg, Faculty of Geosciences, 181 p., Hamburg

    Google Scholar 

  • Kalkowsky, E. (1908): Oolith und Stromatolith im norddeutschen Buntsandstein.—Z. Deutsch. Geol. Gesellschaft60, 68–125

    Google Scholar 

  • Kazmierczak, T. &Krumbein, W.E. (1983): Identification of calcified coccoid cyanobacteria forming stromatoporoid stromatolites.—Lethaia16, 207–213

    Article  Google Scholar 

  • Klappa, C.F. (1979): Lichen stromatolites: Criterion for subaerial exposure and a mechanism for the formation of laminar calcretes (caliche).—Journal of Sedimentary Petrology49/2, 387–400, Tulsa

    Google Scholar 

  • Kohlmeyer, J. &Kohlmeyer, E. (1979): Marine Mycology—The Higher Fungi.—690 p., New York (Academic Press)

    Google Scholar 

  • Kretzschmar, M. (1982): Fossil fungi in iron stromatlolites from Warstein (Rhenish Massif, Northwest Germany).—Facies7, 237–260, Erlangen

    Article  Google Scholar 

  • Krumbein, W.E. (1979) Cyanobakterien-Bakterien oder Algen? 130 pp., Oldenburg (Littmann)

    Google Scholar 

  • Krumbein, W. E. &Stal, L. J. (1991): The geophysiology of marine cyanobacterial mats and biofilms.—Kieler Meeresforsch., Sonderh.8, 137–145

    Google Scholar 

  • Larwood, G. P. (1969): Frontal calcification and its function in some Cretaceous and Recent cribrimorph and other cheilostome Bryozoa.—Bulletin of the British Museum (Natural History) (Zoology)18/5, 173–182, London

    Google Scholar 

  • Le Campion-Alsumard, T., Golubic, S. &Priess, K. (1995) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization.—Marine Ecology Progress Series117, 137–147

    Article  Google Scholar 

  • Lee, D. E., Scholz, J. &Gordon, D. P. (1997): Paleoecology of late Eocene Mobile Rockground Biota from North Otago, New Zealand.—Palaios12, 568–581, Tulsa

    Article  Google Scholar 

  • Leinfelder, R. R., Nose, M., Schmidt, D. U. &W. Werner (1993): Microbial Crusts of the Late Jurassic: Composition, Palaeoecological Significance and Importance in Reef Construction. —Facies29, 195–230, Erlangen

    Article  Google Scholar 

  • Lidgard, S., McKinney, F.K. &Taylor, P.D. (1993): Competition, clade, replacement, and a history of cyclostome and cheilostome bryozoan biodiversity.—Paleobiology19/3, 352–371, Lawrence

    Article  Google Scholar 

  • MacGillivray, P. H. (1891): Description of new or little known Polyzoa.—Transactions of the Royal Society of Victoria, new series3, 77–83

    Google Scholar 

  • McKinney, F. K. &Jackson, J. B. C. (1989): Bryozoan Evolution. —Special Topics in Paleontology2, 1–238, Boston (Unwin Hyman).

    Google Scholar 

  • Palinska, K. A. &Krumbein, W. E. (1994) Ecotype-Phenotype-Genotype. An approach to theSynechococcus-Synechocystis-Merismopedia-Eucapsis complex.—Algological Studies75, 213–227

    Google Scholar 

  • Reguant, S. &Zamarreno, I. (1987): Bryozoan Bioherms on the Mediterranean Continental Shelf (Northeastern Spain).—In:Ross, J. R. P. (ed.): Bryozoa: Present & Past.—229–236, Bellingham (Western Washington University)

    Google Scholar 

  • Rider, J. &Enrico, R. (1979): Structural and functional adaptations of mobile anascan ectoproct colonies (Ectoproctaliths).—In:Larwood, G. P. &Abbott, M. B. (eds.): Advances in Bryozoology.—Systematics Association Special Publication No.13, 297–319, London (Academic Press)

    Google Scholar 

  • Riding, R. (1991): Classification of microbial carbonates.—In:Riding, R. (ed.): Calcareous algae and stromatolites.—21–51, Berlin (Springer)

    Chapter  Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. &Stanier, R. Y. (1979): Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria.—Journal of General Microbiology111, 1–61

    Google Scholar 

  • Schaumann, K., (1993): Marine Pilze.—In:Meyer Reil, L.-A. &Köster, M. (eds.): Mikrobiologie des Meeresbodens.—144–195 pp., Stuttgart (Fischer).

    Google Scholar 

  • Scholz, J. (1996): Eine Feldtheorie der Bryozoen, Mikrobenmatten und Sedimentoberflächen.—Habilitation Thesis, University of Hamburg, Faculty of Geosciences, 366 p., Hamburg

    Google Scholar 

  • Scholz, J. (1997): Moostierchen (Bryozoa): Die große Organisation in Richtung des kleinsten Raumes.—In:Steininger, F. F. & Maronde, D. (eds.): Städte unter Wasser. 2 Milliarden Jahre.— Kleine Senckenbergreihe24, 85–92, 5 Abb., Frankfurt a.M.

  • Scholz, J. &Hillmer, G. (1995): Reef-Bryozoans and Bryozoan-Microreefs—Control Factor Evidence from the Philippines and other Regions.—Facies32, 109–144, Erlangen

    Article  Google Scholar 

  • Scholz, J. &Krumbein, W. E. (1994): Entwicklung tropischer Korallenriffe.—Biologie in unserer Zeit2/1994, 96–102, Weinheim

    Article  Google Scholar 

  • Scholz, J. &Krumbein, W. E. (1996): Microbial mats and biofilms associated with bryozoans.—In:Gordon, D. P., Smith, A. M. &Grant-Mackie, J. A. (eds.): Bryozoans in space and time.— 283–298, Wellington (National Institute of Water & Atmospheric Research)

    Google Scholar 

  • Scholz, J., Sterflinger, K., Junge, C. & G. Hillmer (in press): A preliminary report on bryostromatolites.—Smithsonian Contributions to Marine Science

  • Schweissfurth, R. (1972): Manganoxidierende Pilze.—Zeitschrift für Allg. Mikrobiol.12, 667–771

    Article  Google Scholar 

  • Sprigg, M. &Bone, Y. (1993): Bryozoa in Coorong-type lagoons, Southern Australia.—Transactions of the Royal Society of S. Aust.117/2, 87–95

    Google Scholar 

  • Sterflinger, K. &Scholz, J. (1997): Fungal infection and bryozoan morphology.—Vogel-Festschrift, Courier Forschungsinstitut Senckenberg201, 433–447, Frankfurt a.M.

    Google Scholar 

  • Taylor, P. D. (1981): Functional morphology and evolutionary significance of differing modes of tentacle eversion in marine bryozoans.—In:Larwood, G. P. &Nielsen, C. (eds.): Recent and Fossil Bryozoa.—234–347, Fredensborg (Olsen & Olsen)

    Google Scholar 

  • von Der Borch, C. C. (1976): Stratigraphy and formation of the Holocene dolomite carbonate deposits of the Coorong area, South Australia.—Journal of Sedimentary Petrology46, 952–956

    Google Scholar 

  • Whitlatch, R.B., Johnson, R.G. (1974): Methods for staining organic matter in sediments.—Journal of Petrology44/4, 1310–1312.

    Google Scholar 

  • Winston, J. E. &Håkansson, E. (1989): Molting byCupuladria doma, a free-living bryozoan.—Bulletin of Marine Science44/3, 1152–1158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palinska, K.A., Scholz, J., Sterflinger, K. et al. Microbial mats associated with bryozoans (Coorong Lagoon, South Australia). Facies 41, 1–14 (1999). https://doi.org/10.1007/BF02537456

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537456

Keywords

Navigation