Skip to main content
Log in

Biokinetics of and discrimination between dietaryRRR- andSRR-α-tocopherols in the male rat

  • Published:
Lipids

Abstract

The net rates of uptake of the natural (2R,4′R,8′R) diastereoisomer of α-tocopherol (α-T) and the biodiscrimination relative to its 2S-epimer (2S,4′R,8′R) have been measured, in two experiments, for the blood and 21 tissues of male Sprague-Dawley rats fed over a period of several months diets containing deuterium-substituted forms of the α-T acetates. Gas chromatography-mass spectrometry was used to measure the amount of deuterated tocopherols taken up relative to the amount of nondeuterated tocopherol remaining. The measurements were performed at different times after the rats, placed for one month on a basal diet containing nondeuterated, natural α-T acetate, were switched to a diet containing the same total quantity of deuterated forms of either natural α-T acetate or a mixture of the acetates of the 2R- and 2S-epimers (i.e.,ambo-α-T acetate). In experiment 1 the source of vitamin E in the replacement diet was trideuterio-2R,4′R,8′R-α-T acetate. The data obtained provide the first direct measure of the rate at which natural vitamin E is replaced and augmented in the tissues of growing animals under normal laboratory dietary conditions. There are dramatic differences in the tissue kinetics; for example, the apparent half-life of vitamin E, i.e., the time at which the total amount of ingested trideuterio-α-T taken up is the same as the amount of nondeuterated α-T remaining, varies from ca. 1 wk for the lung to ca. 11 wk for the spinal cord. In experiment 2 the vitamin E in the replacement diet was an equimolar mixture of trideuterio-2S,4′R,8′R- and hexadeuterio-2R,4′R,8′R-α-T acetates. The results show that there is a preferential uptake of the natural diastereoisomer of α-T by all tissues (except the liver during the first month). Examination of fecal material reveals that the biodiscrimination begins in the gut; the incomplete hydrolysis of the acetates shows clearly that this reaction proceeds to a greater extent with the natural diastereoisomer. The greatest discrimination of all the tissues examined was found to occur in the brain. After five months, the level of the deuterated natural diastereoisomer was more than five times that of the deuterated 2S-epimer. These results have potential implications for human nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Machlin, L.J., ed. (1980)Vitamin E: A Comprehensive Treatise, Marcel Dekker, New York.

    Google Scholar 

  2. Burton, G.W., and Ingold, K.U. (1984)Science 224, 569–573.

    Article  PubMed  CAS  Google Scholar 

  3. Burton, G.W., Foster, D.O., Perly, B., Slater, T.F., Smith, I.C.P., and Ingold, K.U. (1985)Phil. Trans. R. Soc. Lond. B. 311, 565–578.

    CAS  Google Scholar 

  4. Wieser, H., and Vecchi, M. (1982)Int. J. Vit. Nutr. Res. 52, 351–370.

    Google Scholar 

  5. Machlin, L.J., Gabriel, E., and Brin, M. (1982)J. Nutr. 112, 1437–1440.

    PubMed  CAS  Google Scholar 

  6. Wieser, H., and Vecchi, M. (1981)Int. J. Vit. Nutr. Res. 51, 100–113.

    Google Scholar 

  7. Ames, S.R. (1979)J. Nutr. 109 2198–2204.

    PubMed  CAS  Google Scholar 

  8. Scott, M.L., and Desai, I.D. (1964)J. Nutr. 83, 39–43.

    PubMed  CAS  Google Scholar 

  9. Witting, L.A., and Horwitt, M.K. (1964)Proc. Soc. Exp. Biol. Med. 116, 655–658.

    PubMed  CAS  Google Scholar 

  10. Ames, S.R., Ludwig, M.I., Nelan, D.R., and Robeson, C.D. (1963)Biochemistry 2, 188–190.

    Article  PubMed  CAS  Google Scholar 

  11. Weber, F., Gloor, U., Wursch, J., and Wiss, O. (1964)Biochem. Biophys. Res. Commun. 14, 186–188.

    Article  PubMed  CAS  Google Scholar 

  12. Weber, F., Gloor, U., Wursch, J., and Wiss, O. (1964)Biochem. Biophys. Res. Commun. 14, 189–192.

    Article  PubMed  CAS  Google Scholar 

  13. Desai, I.D., Parekh, C.K., and Scott, M.L. (1965)Biochim. Biophys. Acta 100, 280–282.

    CAS  Google Scholar 

  14. Desai, I.D., and Scott, M.L. (1965)Arch. Biochem. Biophys. 110, 309–315.

    Article  PubMed  CAS  Google Scholar 

  15. Urano, S., Hattori, Y., Yamanoi, S., and Matsuo, M. (1980)Chem. Pharm. Bull. 28, 1992–1998.

    CAS  Google Scholar 

  16. Mayer, H., and Isler, O. (1971)Methods Enzymol. 18, 241–403.

    CAS  Google Scholar 

  17. Cohen, N., Lopresti, R., and Neukom, C. (1981)J. Org. Chem. 46, 2445–2450.

    Article  CAS  Google Scholar 

  18. Bieri, J.G., Stoewsand, G.S., Briggs, G.M., Phillips, R.W., Woodard, J.C., and Knapka, J.J. (1977)J. Nutr. 107, 1340–1348.

    CAS  Google Scholar 

  19. Roebuck, B.D., Wilpone, S.A., Fifield, D.S., and Yager, J.D. (1979)J. Nutr. 109, 924–925.

    PubMed  CAS  Google Scholar 

  20. Bieri, J.G. (1979)J. Nutr. 109, 925–926.

    PubMed  CAS  Google Scholar 

  21. Burton, G.W., Joyce, A., and Ingold, K.U. (1983)Arch. Biochem. Biophys. 221, 281–290.

    Article  PubMed  CAS  Google Scholar 

  22. Burton, G.W., Webb, A., and Ingold, K.U. (1985),Lipids 20, 29–39.

    Article  PubMed  CAS  Google Scholar 

  23. Vatassery, G.T., Angerhofer, C.K., Knox, C.A., and Deshmukh, D.S. (1984)Biochim. Biophys. Acta 792, 118–122.

    PubMed  CAS  Google Scholar 

  24. Thomas, D.W., Parkhurst, R.M., Negi, D.S., Lunan, K.D., Wen, A.C., Brandt, A.E., and Stephens, R.J. (1981)J. Chromatogr. 225, 433–439.

    PubMed  CAS  Google Scholar 

  25. Gallo-Torres, H.E. (1980) inVitamin E: A Comprehensive Treatise (Machlin, L.J., ed.) pp. 170–267, Marcel Dekker, New York.

    Google Scholar 

  26. Doba, T., Burton, G.W., and Ingold, K.U. (1985)Biochim. Biophys. Acta 835, 298–303.

    PubMed  CAS  Google Scholar 

  27. Lombardo, D., and Guy, O. (1980)Biochim. Biophys. Acta 611, 147–155.

    PubMed  CAS  Google Scholar 

  28. Arnett, E.M., and Gold, J.M. (1982)J. Am. Chem. Soc. 104, 636–639.

    Article  CAS  Google Scholar 

  29. Catignani, G.L. (1975)Biochem. Biophys. Res. Commun. 67, 66–72.

    Article  PubMed  CAS  Google Scholar 

  30. Catignani, G.L., and Bieri, J.G. (1977)Biochim. Biophys. Acta 497, 349–357.

    PubMed  CAS  Google Scholar 

  31. Catignani, G.L. (1980)Methods Enzymol. 67, 117–122.

    PubMed  CAS  Google Scholar 

  32. Murphy, D.J., and Mavis, R.D. (1981),J. Biol. Chem. 256, 10464–10468.

    PubMed  CAS  Google Scholar 

  33. Muller, D.P.R., Lloyd, J.K., and Wolff, O.H. (1983)Lancet 225–227.

  34. Muller, D.P.R., Lloyd, J.K., and Wolff, O.H. (1983) inBiology of Vitamin E, Ciba Foundation symposium 101, pp. 106–121, Pitman, London.

    Google Scholar 

  35. Brown, M.S., and Goldstein, J.L. (1986)Science 232, 34–47.

    Article  PubMed  CAS  Google Scholar 

  36. Traber, M.G., and Kayden, H.J. (1984)Am. J. Clin. Nutr. 40, 747–751.

    PubMed  CAS  Google Scholar 

  37. Thellman, C.A., and Shireman, R.B. (1985)J. Nutr. 115, 1673–1679.

    PubMed  CAS  Google Scholar 

  38. Traber, M.G., Olivecrona, T., and Kayden, H.J. (1985)J. Clin. Invest. 75, 1729–1734.

    Article  PubMed  CAS  Google Scholar 

  39. Eisenberg, S. (1979)Prog. Biochem. Pharmacol. 15, 139–165.

    PubMed  CAS  Google Scholar 

  40. Kayden, H.J., and Björnson, L.K. (1972)Ann. N.Y. Acad. Sci. 203, 127–140.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NRCC No. 26850.

About this article

Cite this article

Ingold, K.U., Burton, G.W., Foster, D.O. et al. Biokinetics of and discrimination between dietaryRRR- andSRR-α-tocopherols in the male rat. Lipids 22, 163–172 (1987). https://doi.org/10.1007/BF02537297

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537297

Keywords

Navigation