, Volume 22, Issue 3, pp 163–172 | Cite as

Biokinetics of and discrimination between dietaryRRR- andSRR-α-tocopherols in the male rat

  • K. U. Ingold
  • G. W. Burton
  • D. O. Foster
  • L. Hughes
  • D. A. Lindsay
  • A. Webb


The net rates of uptake of the natural (2R,4′R,8′R) diastereoisomer of α-tocopherol (α-T) and the biodiscrimination relative to its 2S-epimer (2S,4′R,8′R) have been measured, in two experiments, for the blood and 21 tissues of male Sprague-Dawley rats fed over a period of several months diets containing deuterium-substituted forms of the α-T acetates. Gas chromatography-mass spectrometry was used to measure the amount of deuterated tocopherols taken up relative to the amount of nondeuterated tocopherol remaining. The measurements were performed at different times after the rats, placed for one month on a basal diet containing nondeuterated, natural α-T acetate, were switched to a diet containing the same total quantity of deuterated forms of either natural α-T acetate or a mixture of the acetates of the 2R- and 2S-epimers (i.e.,ambo-α-T acetate). In experiment 1 the source of vitamin E in the replacement diet was trideuterio-2R,4′R,8′R-α-T acetate. The data obtained provide the first direct measure of the rate at which natural vitamin E is replaced and augmented in the tissues of growing animals under normal laboratory dietary conditions. There are dramatic differences in the tissue kinetics; for example, the apparent half-life of vitamin E, i.e., the time at which the total amount of ingested trideuterio-α-T taken up is the same as the amount of nondeuterated α-T remaining, varies from ca. 1 wk for the lung to ca. 11 wk for the spinal cord. In experiment 2 the vitamin E in the replacement diet was an equimolar mixture of trideuterio-2S,4′R,8′R- and hexadeuterio-2R,4′R,8′R-α-T acetates. The results show that there is a preferential uptake of the natural diastereoisomer of α-T by all tissues (except the liver during the first month). Examination of fecal material reveals that the biodiscrimination begins in the gut; the incomplete hydrolysis of the acetates shows clearly that this reaction proceeds to a greater extent with the natural diastereoisomer. The greatest discrimination of all the tissues examined was found to occur in the brain. After five months, the level of the deuterated natural diastereoisomer was more than five times that of the deuterated 2S-epimer. These results have potential implications for human nutrition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Machlin, L.J., ed. (1980)Vitamin E: A Comprehensive Treatise, Marcel Dekker, New York.Google Scholar
  2. 2.
    Burton, G.W., and Ingold, K.U. (1984)Science 224, 569–573.PubMedCrossRefGoogle Scholar
  3. 3.
    Burton, G.W., Foster, D.O., Perly, B., Slater, T.F., Smith, I.C.P., and Ingold, K.U. (1985)Phil. Trans. R. Soc. Lond. B. 311, 565–578.Google Scholar
  4. 4.
    Wieser, H., and Vecchi, M. (1982)Int. J. Vit. Nutr. Res. 52, 351–370.Google Scholar
  5. 5.
    Machlin, L.J., Gabriel, E., and Brin, M. (1982)J. Nutr. 112, 1437–1440.PubMedGoogle Scholar
  6. 6.
    Wieser, H., and Vecchi, M. (1981)Int. J. Vit. Nutr. Res. 51, 100–113.Google Scholar
  7. 7.
    Ames, S.R. (1979)J. Nutr. 109 2198–2204.PubMedGoogle Scholar
  8. 8.
    Scott, M.L., and Desai, I.D. (1964)J. Nutr. 83, 39–43.PubMedGoogle Scholar
  9. 9.
    Witting, L.A., and Horwitt, M.K. (1964)Proc. Soc. Exp. Biol. Med. 116, 655–658.PubMedGoogle Scholar
  10. 10.
    Ames, S.R., Ludwig, M.I., Nelan, D.R., and Robeson, C.D. (1963)Biochemistry 2, 188–190.PubMedCrossRefGoogle Scholar
  11. 11.
    Weber, F., Gloor, U., Wursch, J., and Wiss, O. (1964)Biochem. Biophys. Res. Commun. 14, 186–188.PubMedCrossRefGoogle Scholar
  12. 12.
    Weber, F., Gloor, U., Wursch, J., and Wiss, O. (1964)Biochem. Biophys. Res. Commun. 14, 189–192.PubMedCrossRefGoogle Scholar
  13. 13.
    Desai, I.D., Parekh, C.K., and Scott, M.L. (1965)Biochim. Biophys. Acta 100, 280–282.Google Scholar
  14. 14.
    Desai, I.D., and Scott, M.L. (1965)Arch. Biochem. Biophys. 110, 309–315.PubMedCrossRefGoogle Scholar
  15. 15.
    Urano, S., Hattori, Y., Yamanoi, S., and Matsuo, M. (1980)Chem. Pharm. Bull. 28, 1992–1998.Google Scholar
  16. 16.
    Mayer, H., and Isler, O. (1971)Methods Enzymol. 18, 241–403.Google Scholar
  17. 17.
    Cohen, N., Lopresti, R., and Neukom, C. (1981)J. Org. Chem. 46, 2445–2450.CrossRefGoogle Scholar
  18. 18.
    Bieri, J.G., Stoewsand, G.S., Briggs, G.M., Phillips, R.W., Woodard, J.C., and Knapka, J.J. (1977)J. Nutr. 107, 1340–1348.Google Scholar
  19. 19.
    Roebuck, B.D., Wilpone, S.A., Fifield, D.S., and Yager, J.D. (1979)J. Nutr. 109, 924–925.PubMedGoogle Scholar
  20. 20.
    Bieri, J.G. (1979)J. Nutr. 109, 925–926.PubMedGoogle Scholar
  21. 21.
    Burton, G.W., Joyce, A., and Ingold, K.U. (1983)Arch. Biochem. Biophys. 221, 281–290.PubMedCrossRefGoogle Scholar
  22. 22.
    Burton, G.W., Webb, A., and Ingold, K.U. (1985),Lipids 20, 29–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Vatassery, G.T., Angerhofer, C.K., Knox, C.A., and Deshmukh, D.S. (1984)Biochim. Biophys. Acta 792, 118–122.PubMedGoogle Scholar
  24. 24.
    Thomas, D.W., Parkhurst, R.M., Negi, D.S., Lunan, K.D., Wen, A.C., Brandt, A.E., and Stephens, R.J. (1981)J. Chromatogr. 225, 433–439.PubMedGoogle Scholar
  25. 25.
    Gallo-Torres, H.E. (1980) inVitamin E: A Comprehensive Treatise (Machlin, L.J., ed.) pp. 170–267, Marcel Dekker, New York.Google Scholar
  26. 26.
    Doba, T., Burton, G.W., and Ingold, K.U. (1985)Biochim. Biophys. Acta 835, 298–303.PubMedGoogle Scholar
  27. 27.
    Lombardo, D., and Guy, O. (1980)Biochim. Biophys. Acta 611, 147–155.PubMedGoogle Scholar
  28. 28.
    Arnett, E.M., and Gold, J.M. (1982)J. Am. Chem. Soc. 104, 636–639.CrossRefGoogle Scholar
  29. 29.
    Catignani, G.L. (1975)Biochem. Biophys. Res. Commun. 67, 66–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Catignani, G.L., and Bieri, J.G. (1977)Biochim. Biophys. Acta 497, 349–357.PubMedGoogle Scholar
  31. 31.
    Catignani, G.L. (1980)Methods Enzymol. 67, 117–122.PubMedGoogle Scholar
  32. 32.
    Murphy, D.J., and Mavis, R.D. (1981),J. Biol. Chem. 256, 10464–10468.PubMedGoogle Scholar
  33. 33.
    Muller, D.P.R., Lloyd, J.K., and Wolff, O.H. (1983)Lancet 225–227.Google Scholar
  34. 34.
    Muller, D.P.R., Lloyd, J.K., and Wolff, O.H. (1983) inBiology of Vitamin E, Ciba Foundation symposium 101, pp. 106–121, Pitman, London.Google Scholar
  35. 35.
    Brown, M.S., and Goldstein, J.L. (1986)Science 232, 34–47.PubMedCrossRefGoogle Scholar
  36. 36.
    Traber, M.G., and Kayden, H.J. (1984)Am. J. Clin. Nutr. 40, 747–751.PubMedGoogle Scholar
  37. 37.
    Thellman, C.A., and Shireman, R.B. (1985)J. Nutr. 115, 1673–1679.PubMedGoogle Scholar
  38. 38.
    Traber, M.G., Olivecrona, T., and Kayden, H.J. (1985)J. Clin. Invest. 75, 1729–1734.PubMedCrossRefGoogle Scholar
  39. 39.
    Eisenberg, S. (1979)Prog. Biochem. Pharmacol. 15, 139–165.PubMedGoogle Scholar
  40. 40.
    Kayden, H.J., and Björnson, L.K. (1972)Ann. N.Y. Acad. Sci. 203, 127–140.PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1985

Authors and Affiliations

  • K. U. Ingold
    • 1
  • G. W. Burton
    • 1
  • D. O. Foster
    • 2
  • L. Hughes
    • 1
  • D. A. Lindsay
    • 1
  • A. Webb
    • 1
  1. 1.Division of ChemistryNational Research Council of CanadaOttawaCanada
  2. 2.Division of Biological SciencesNational Research Council of CanadaOttawaCanada

Personalised recommendations