Skip to main content
Log in

Effect of increasing the level of ω-3 fatty acids on rat skeletal muscle sarcoplasmic reticulum

  • Published:
Lipids

Abstract

The effect of dietary supplementation with fish oil as compared to corn oil on the lipid dynamics and calcium ATPase activity of rat skeletal sarcoplasmic reticulum was examined. After four-week supplementation with fish oil, the levels of eicosapentaenoic (20∶5ω3), docosapentaenoic (22∶5ω3) and docosahexaenoic (22∶6ω3) acids in the total lipids were 5.3, 5.5 and 28.1% of the total fatty acids, respectively. In contrast, with corn oil only 22∶6 was found (8.9%). The level of these fatty acids in phosphatidylethanolamine from the membranes of animals fed fish oil was 4.2 (20∶5), 5.4 (22∶5) and 49.1% (22∶6); and for phosphatidylcholine it was 5.4 (20∶5), 4.6 (22∶5) and 17.4% (22∶6). Again, in corn oil fed animals, only 22∶6 was found in appreciable amounts, namely 28.3% in phosphatidylethanolamine and 1.8% in phosphatidylcholine. The steady state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to assess lipid order and was found to be only slightly less for membranes from animals supplemented with fish oil (0.120) as compared to those supplemented with corn oil (0.124). The calcium ATPase was found to be unaffected by supplementation consistent with the observed modest changes in lipid order as well as with suggestions that the enzyme is relatively insensitive to the level of unsaturation. It could be argued that if large increases in fatty acyl polyunsaturation in mammalian cell membranes would lead to marked alterations in bulk membrane lipid motional properties, this may not be in the interest of preserving physiological function. The complex mixture of phospholipid molecular species present in natural membranes may buffer against this by a type of passive adaptation, without the expenditure of metabolic energy, thus providing a homeoviscous environment able to optimally support membrane protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPH:

1,6-diphenyl-1,3,5-hexatriene

DPH-PC:

1-acyl-2-propanoyl(DPH)-glycerophosphocholine

GLC:

gas liquid chromatography

HPTLC:

high performance thin-layer chromatography

PC:

phosphatidylcholine

PE:

phosphatidylthanolamine

SR:

sacroplasmic reticulum

TMA-DPH:

trimethylammonium-DPH; fatty acids are designated as the number of carbons: number ofcis-double bonds

References

  1. Stubbs, C.D., and Smith, A.D. (1984)Biochim. Biophys. Acta 779, 89–137.

    PubMed  CAS  Google Scholar 

  2. Spector, A.A., and York, M.A. (1985)J. Lipid Res. 26, 1015–1035.

    PubMed  CAS  Google Scholar 

  3. McMurchie, E.J. (1988) inPhysiological Regulation of Membrane Fluidity, pp. 189–237, Alan Liss, New York.

    Google Scholar 

  4. Conroy, D.C., Stubbs, C.D., Belin, J., Pryor, C.L., and Smith, A.D. (1986)Biochim. Biophys. Acta 861, 457–462.

    Article  PubMed  CAS  Google Scholar 

  5. Guffy, M.M., Rosenberger, J.A., Simon, I., and Burns, C.P. (1982)Cancer Res. 42, 3625–3630.

    PubMed  CAS  Google Scholar 

  6. Laustiola, K., Salo, M.K., and Metsa-Ketala, T. (1986)Biochim. Biophys. Acta 889, 95–102.

    Article  PubMed  CAS  Google Scholar 

  7. Clejan, S., Jonas, E., Collip, P.L., Fugler, L., and Maddaiah, V.T. (1981)Biochim. Biophys. Acta 678, 250–256.

    PubMed  CAS  Google Scholar 

  8. Reibel, D.K., Holahan, M.A., and Hock, E.C. (1988)Am. J. Physiol. 252, H494-H499.

    Google Scholar 

  9. Hock, E.C., Holahan, M.A., and Reibel, D.K. (1988)Am. J. Physiol. 252, H554-H560.

    Google Scholar 

  10. Hidalgo, C. (1987)C.R.C. Critical Reviews in Biochemistry 21, 319–347.

    CAS  Google Scholar 

  11. Davis, D.G., Inesi, G., and Gulik-Krzywicki, T. (1976)Biochemistry 15, 1271–1276.

    Article  PubMed  CAS  Google Scholar 

  12. Moore, B.M., Lentz, B.R., and Miessner, G. (1978)Biochemistry 17, 5248–5255.

    Article  PubMed  CAS  Google Scholar 

  13. Hidalgo, C., Thomas, D.D., and Ikemoto, N. (1978)J. Biol. Chem. 253, 6879–6887.

    PubMed  CAS  Google Scholar 

  14. Nakamura, H., and Martinosi, A.M. (1980)J. Biochem. (Tokyo) 87, 525–534.

    CAS  Google Scholar 

  15. Almeida, L.M., Vaz, W.L.C., Stumpel, J., and Madiera, V.M.C. (1986)Biochemistry 25, 4832–4839.

    Article  PubMed  CAS  Google Scholar 

  16. Infante, J.P. (1987)Mol. Cell. Biochem. 74, 111–116.

    Article  PubMed  CAS  Google Scholar 

  17. Tume, R.K., Newbold, R.P., and Horgan, D.J. (1973)Arch. Biochem. Biophys. 157, 485–490.

    Article  PubMed  CAS  Google Scholar 

  18. Gould, G.W., McWhirter, J.M., East, J.M., and Lee, A.G. (1987)Biochem. J. 245, 751–755.

    PubMed  CAS  Google Scholar 

  19. Croset, M., Black, J.M., Swanson, J.E., and Kinsella, J.E. (1989)Lipids 24, 278–285.

    PubMed  CAS  Google Scholar 

  20. Swanson, J.E., Lokesh, B.R., and Kinsella, J.E. (1989)J. Nutrition 119, 364–372.

    CAS  Google Scholar 

  21. East, J.M., Jones, O.T., Simmonds, A.C., and Lee, A.G. (1984)J. Biol. Chem. 259, 8070–8071.

    PubMed  CAS  Google Scholar 

  22. MacLennon, D.H. (1970)J. Biol. Chem. 245, 4508–4518.

    Google Scholar 

  23. Lowry, O.L., Randall, R.J., Rosebrough, N.J., and Farr, A.L. (1951)J. Biol. Chem. 193, 833–841.

    Google Scholar 

  24. Warren, G.B., Toon, P.A., Birdsall, N.J.M., Lee, A.G., and Metcalfe, J.C. (1974)Proc. Natl. Acad. Sci. USA 71, 622–626.

    Article  PubMed  CAS  Google Scholar 

  25. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  26. Vitiello, F., and Zanetta, J.P. (1978)J. Chromatog. 166, 637–640.

    Article  CAS  Google Scholar 

  27. Morrison, U.R., and Smith, L.M. (1964)J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  28. Ackman, G.R. (1969)Methods Enzymol. 4, 329–381.

    Article  Google Scholar 

  29. Stubbs, C.D., Kinosita, K., Jr., Munkonge, F., Quinn, P.J., and Ikegami, A. (1984)Biochim. Biophys. Acta 775, 374–380.

    Article  PubMed  CAS  Google Scholar 

  30. Gratton, E., and Limkemann, M. (1983)Biophys. J. 44, 315–324.

    Article  PubMed  CAS  Google Scholar 

  31. Lakowicz, J.R., and Maliwal, B.P. (1985)Biophys. Chem. 21, 61–78.

    Article  PubMed  CAS  Google Scholar 

  32. Fiorini, R., Valentino, M., WAng, S., Glaser, M., and Gratton, E. (1987)Biochemistry 26, 3864–3870.

    Article  PubMed  CAS  Google Scholar 

  33. James, D.R., Turnbull, J.R., Wagner, B.D., Ware, W.R., and Petersen, N.O. (1987)Biochemistry 26, 6272–6277.

    Article  PubMed  CAS  Google Scholar 

  34. Lakowicz, J.R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M.L. (1987)Biophys. Chem. 28, 35–50.

    Article  PubMed  CAS  Google Scholar 

  35. Schroeder, F., Nemecz, G., Gratton, E., Barenholz, Y., and Thompson, T.E. (1988)Biophys. Chem. 32, 57–72.

    Article  PubMed  CAS  Google Scholar 

  36. Williams, B.W., and Stubbs, C.D. (1988)Biochemistry 27, 7994–7999.

    Article  PubMed  CAS  Google Scholar 

  37. Williams, B.W., and Stubbs, C.D. (1990)Biochemistry 29, 3248–3255.

    Article  PubMed  CAS  Google Scholar 

  38. Knowles, A.F., and Racker, E. (1975)J. Biol. Chem. 250, 3538–3544.

    PubMed  CAS  Google Scholar 

  39. Hidalgo, C., Petrucci, D.A., and Vergara, C. (1982)J. Biol. Chem. 257, 208–216.

    PubMed  CAS  Google Scholar 

  40. Navarro, J., Toivio-Kinnucan, M., and Racker, E. (1984)Biochemistry 23, 130–135.

    Article  PubMed  CAS  Google Scholar 

  41. Coan, C. (1985)J. Biol. Chem. 260, 8134–8144.

    PubMed  CAS  Google Scholar 

  42. McGill, K.A., Bennett, J.P., Smith, G.A., Plumb, R.W., and Warren, G.B. (1981)Biochem. J. 195, 287–295.

    PubMed  CAS  Google Scholar 

  43. Schroeder, F. (1985)Subcell. Biochem. 11, 51–101.

    PubMed  CAS  Google Scholar 

  44. Herbette, L., DeFoor, P., Fleischer, S., Pascolini, D., Scarpa, A., and Blasie, J.K. (1985)Biochim. Biophys. Acta 817, 103–122.

    Article  PubMed  CAS  Google Scholar 

  45. Applegate, K.R., and Glomset, J.A. (1986)J. Lipid Res. 27, 658–680.

    PubMed  CAS  Google Scholar 

  46. Parente, R., and Lentz, B.R. (1985)Biochemistry 24, 6178–6185.

    Article  PubMed  CAS  Google Scholar 

  47. Kinosita, K., Kawato, S., and Ikegami, I. (1984)Adv. Biophys. 17, 147–203.

    Article  PubMed  Google Scholar 

  48. Davenport, L., Dale, R.E., Bisby, R.H., and Cundall, R.B. (1985)Biochemistry, 24, 4097–4108.

    Article  PubMed  CAS  Google Scholar 

  49. Waku, K., Uda, Y., and Nakazawa, Y. (1971)J. Biochem. (Tokyo) 69, 483–491.

    CAS  Google Scholar 

  50. Rosemblatt, M., Hidalgo, C., and Vergara, C., and Ikemoto, N. (1981)J. Biol. Chem. 256, 8140–8148.

    PubMed  CAS  Google Scholar 

  51. Stubbs, C.D., Kouyama, T., Kinosita, K., Jr., and Ikegami, A. (1981)Biochemistry 20, 4257–4262.

    Article  PubMed  CAS  Google Scholar 

  52. Straume, M., and Litman, B.J. (1987)Biochemistry 26, 5113–5120.

    Article  PubMed  CAS  Google Scholar 

  53. Deese, A.J., Dratz, E.A., Dahlquist, F.W., and Paddy, M.R. (1981)Biochemistry 20, 6420–6427.

    Article  PubMed  CAS  Google Scholar 

  54. Stubbs, C.D. (1989)Colloque INSERM 195, 125–134.

    CAS  Google Scholar 

  55. Salem, N., Serpentino, P., Pusking, J.S., and Abood, L.G. (1980)Chem. Phys. Lipids 27, 289–304.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Stubbs, C.D., Kisielewski, A.E. Effect of increasing the level of ω-3 fatty acids on rat skeletal muscle sarcoplasmic reticulum. Lipids 25, 553–558 (1990). https://doi.org/10.1007/BF02537164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537164

Keywords

Navigation