Skip to main content
Log in

Occurrence of 22∶3n−9 and 22∶4n−9 in the lipids of the topminnow (Poeciliopsis lucida) hepatic tumor cell line, PLHC-1

  • Article
  • Published:
Lipids

Abstract

The lipids of the hepatic tumor cell line, PLHC-1, from the topminnow (Poeciliopsis lucida), were found to contain considerable amounts of a range of n−9 polyunsaturated fatty acids despite culture in serum containing significant amounts of essential fatty acids. The structural identity of all the n−9 polyunsaturated fatty acids was confirmed by gas chromatography/mass spectrometry. Of particular interest, PLHC-1 cell total lipid contained 1.9% of 22∶3n−9 and 3.3% of 22∶4n−9. As the culture medium contained virtually no n−9 polyunsaturated fatty acids, these fatty acids are all formed by the PLHC-1 cells, presumably form 18∶1n−9. The 22∶3n−9 and 22∶4n−9 are presumably formed by processes of elongation and “Δ4” desaturation of Mead acid, 20∶3n−9, present at over 11% in fatty acids of total lipid. Both 22∶3n−9 and 22∶4n−9 were primarily located in phosphatidylserine (4.1 and 8.5% respectively) and, to a lesser extent, in phosphatidylethanolamine (2.2 and 6.5%, respectively), in common with the C22 derivatives of the n−3 and n−6 series, whereas 20∶3n−9 was preferentially located in phosphatidylinositol (31.2%). The results establish that long-chain polyunsaturated fatty acids of the n−9 series can be formed in vertebrate tissue other than in conditions of classical essential fatty acid deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHT:

butylated hydroxytoluene

BSA:

bovine serum albumin

CI:

chemical ionization

EFA:

essential fatty acids

EI:

electron ionization

FAME:

fatty acid methyl esters

FCS:

fetal calf serum

GC:

gas chromatography

HBSS:

Hank's balanced salt solution (without Ca2+ and Mg2+)

MS:

mass spectrometry

PC:

phosphatidylcholine

PE:

phosphatidyl-ethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

PUFA:

polyunsaturated fatty acid

TF:

turbot fin cell line

References

  1. Burr, G.O., and Burr, M.M. (1929) A New Deficiency Disease Produced by the Rigid Exclusion of Fat from the Diet,J. Biol. Chem. 82, 345–367.

    CAS  Google Scholar 

  2. Tinoco, J. (1982) Dietary Requirements and Functions of α-Linolenic Acid in Animals,Prog. Lipid Res. 21, 1–46.

    Article  PubMed  CAS  Google Scholar 

  3. Vergroesen, A. (ed.) (1975)The Role of Fats in Human Nutrition, Academic Press, New York.

    Google Scholar 

  4. Sargent, J.R. (1976) The Structure, Metabolism and Function of Lipids in Marine Organisms,Biochemical and Biophysical Perspectives in Marine Biology (Malins, D.C., and Sargent, J.R., eds.) Vol. 3, pp. 149–212, Academic Press, New York.

    Google Scholar 

  5. Ackman, R.G. (1980) Fish Lipids, Part 1,Advances in Fish Science and Technology (Connell, J.J., ed.) pp. 86–103, Fishing News Books Ltd., Fanham, Surrey.

    Google Scholar 

  6. Ackman, R.G. (1982) Fatty Acid Composition of Fish Oils,Nutritional Evaluation of Long-Chain Fatty Acids in Fish Oil (Barlow, S.M., and Stanby, M.E., eds.) pp. 25–88, Academic Press, London.

    Google Scholar 

  7. Holman, R.T. (1970) Essential Fatty Acid Deficiency,Prog. Chem. Fats and Other Lipids 9, 279–348.

    Google Scholar 

  8. Carroll, K.K. (1965) Dietary Fat and the Fatty Acid Composition of Tissue Lipids,J. Am. Oil Chem. Soc. 42, 516–520.

    PubMed  CAS  Google Scholar 

  9. Brenner, R.R., and Peluffo, R.O. (1966) Effect of Saturated and Unsaturated Fatty Acids on the Desaturationin Vitro of Palmitic, Stearic, Oleic, Linoleic and Linolenic Acids,J. Biol. Chem. 241, 5213–5219.

    PubMed  CAS  Google Scholar 

  10. Mead, J.F., and Slaton, W.H. (1956) Metabolism of Essential Fatty Acids. III. Isolation of 5,8,11-Eicosatrienoic Acid from Fat-Deficient Rats,J. Biol. Chem. 219, 705–709.

    PubMed  CAS  Google Scholar 

  11. Walker, B.L. (1966) Chromatographic Evidence for the Occurrence of Oleic Acid Metabolites in Erythrocytes from Essential Fatty Acid-Deficient Rats,Arch. Biochem. Biophys. 114, 465–471.

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe, T. (1982)Lipid Nutrition in Fish, Comp. Biochem. Physiol. 73B, 3–15.

    CAS  Google Scholar 

  13. Henderson, R.J., and Tocher, D.R. (1987) The Lipid Composition and Biochemistry of Freshwater Fish,Prog. Lipid Res. 26, 281–347.

    Article  PubMed  CAS  Google Scholar 

  14. Holman, R.T. (1986) Nutritional and Biochemical Evidences of Acyl Interaction with Respect to Essential Polyunsaturated Fatty Acids,Prog. Lipid Res. 25, 29–39.

    Article  PubMed  CAS  Google Scholar 

  15. Tocher, D.R., Sargent, J.R., and Frerichs, G.N. (1988) The Fatty Acid Compositions of Established Fish Cell Lines After Long-Term Culture in Mammalian Sera,Fish Physiol. Biochem. 5, 219–227.

    Article  CAS  Google Scholar 

  16. Tocher, D.R., and Dick, J.R. (1990) Polyunsaturated Fatty Acid Metabolism in Cultured Fish Cells: Incorporation and Metabolism of n−3 and n−6 Series Acids by Atlantic Salmon (Salmo salar) Cells,Fish Physiol. Biochem. 8, 311–319.

    Article  CAS  Google Scholar 

  17. Ryan, J.A., and Hightower, L.E. (1994) Evaluation of Heavy-Metal Ion Toxicity in Fish Cells Using a Combined Stress Protein and Cytotoxicity Assay,Environ. Toxicol. Chem. 13, 1231–1240.

    CAS  Google Scholar 

  18. Tocher, D.R., Castell, J.D., Dick, J.R., and Sargent, J.R. (1994) Effects of Salinity on the Growth, Lipid Content and Lipid Class Composition of Atlantic Salmon (Salmo salar) and Turbot (Scophathalmus maximus) Cells in Culture,Fish Physiol. Biochem. 13, 451–461.

    Article  CAS  Google Scholar 

  19. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues,J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  20. Tocher, D.R., and Harvie, D.G. (1988) Fatty Acid Compositions of the Major Phosphoglycerides from Fish Neural Tissues; n−3 and n−6 Polyunsaturated Fatty Acids in Rainbow Trout (Salmo gairdneri) and Cod (Gadus morhua) Brains and Retinas,Fish Physiol. Biochem. 5, 229–239.

    Article  CAS  Google Scholar 

  21. Henderson, R.J., and Tocher, D.R. (1992) Thin-Layer Chromatography,Lipid Analysis: A Practical Approach (Hamilton, R.J., and Hamilton, S., eds.) pp. 65–111, IRL Press, Oxford.

    Google Scholar 

  22. Olsen, R.E., and Henderson, R.J. (1989) The Rapid Analysis of Neutral and Polar Marine Lipids Using Double-Development HPTLC and Scanning Densitometry,J. Exp. Mar. Biol. Ecol. 129, 189–197.

    Article  CAS  Google Scholar 

  23. Vitiello, F., and Zanetta, J.-P. (1978) Thin-Layer Chromatography of Phospholipids,J. Chromatogr. 166, 637–640.

    Article  PubMed  CAS  Google Scholar 

  24. Christie, W.W. (1982)Lipid Analysis, 2nd edn., Pergamon Press, Oxford.

    Google Scholar 

  25. Christie, W.W., and Stefanov, K. (1987) Separation of Picolinyl Ester Derivatives of Fatty Acids by High-Performance Liquid Chromatography for Identification by Mass Spectrometry,J. Chromatogr. 392, 259–265.

    Article  CAS  Google Scholar 

  26. Evershed, R.P. (1992) Mass Spectrometry of Lipids,Lipid Analysis: A Practical Approach (Hamilton, R.J., and Hamilton, S., eds.) pp. 263–308, IRL Press, Oxford.

    Google Scholar 

  27. Cinti, D.L., Cook, L., Nagi, M.N., and Suneja, S.K. (1992) The Fatty Acid Chain Elongation System of Mammalian Endoplasmic Reticulum,Prog. Lipid Res. 31, 1–51.

    Article  PubMed  CAS  Google Scholar 

  28. Banerjee, N., and Rosenthal, M.D. (1986) Elongation of C20 Polyunsaturated Fatty Acids by Human Skin Fibroblasts,Biochim. Biophys. Acta 878 404–411.

    PubMed  CAS  Google Scholar 

  29. Stubbs, C.D., and Smith, A.D. (1984) The Modification of Mammalian Membrane Polyunsaturated Fatty Acid Composition in Relation to Membrane Fluidity and Function,Biochim. Biophys. Acta 779, 89–137.

    PubMed  CAS  Google Scholar 

  30. Voss, A., Reinhart, M., Sankarappa, S., and Sprecher, H. (1991) The Metabolism of 7,10,13,16,19-Docosapentaenoic Acid to 4,7,10,13,16,19-Docosahexaenoic Acid in Rat Liver Is Independent of a 4-Desaturase,J. Biol. Chem. 266, 19995–20000.

    PubMed  CAS  Google Scholar 

  31. Voss, A., Reinhart, M., and Sprecher, H. (1992) Differences in the Interconversion Between 20-Carbon n−3 and n−6 Polyunsaturated Fatty Acids in Rat Liver,Biochim. Biophys. Acta 1127, 33–40.

    PubMed  CAS  Google Scholar 

  32. Sprecher, H. (1992) A Reevaluation of the Pathway for the Biosynthesis of 4,7,10,13,16,19-Docosahexaenoic Acid,Omega-3 News 7, 1–3.

    Google Scholar 

  33. Karmiol, S., and Bettger, W.J. (1988) Accumulation of n−9-Eicosatrienoic and Docosatrienoic Acids in Human Fibroblast Phospholipids,Lipids 23, 891–898.

    Article  PubMed  CAS  Google Scholar 

  34. Karmiol, S., and Bettger, W.J. (1991) Lack of an Association Between Cellular Phospholipid Triene: Tetraene Ratio and Proliferation of Human Skin Fibroblasts in Culture,J. Nutr. 121, 595–604.

    PubMed  CAS  Google Scholar 

  35. Bettger, W.J., Driscoll, E.R., and Karmiol, S. (1992) Selective Depletion of Nonesterified Fatty Acids in Fetal Bovine Serum-Supplemented Culture Medium by Human Fibroblasts Proliferating in Low-Density Culture,J. Nutr. Biochem. 3, 349–352.

    Article  CAS  Google Scholar 

  36. Lynch, R.D., Locicero, J., and Schneeberger, E.E. (1986) Metabolism and Incorporation into Glycerolipids of Exogenous 18∶3n−3 and 18∶3n−6 by MDCK Cells,Lipids 21, 447–453.

    Article  PubMed  CAS  Google Scholar 

  37. Galella, G., Marangoni, F., Rise, P., Colombo, C., Galli, G., and Galli, C. (1993) n−6 and n−3 Fatty Acid Acculmulation in thp-1 Cell Phospholipids,Biochim. Biophys. Acta 1169, 280–290.

    PubMed  CAS  Google Scholar 

  38. Pepin, D., Chambaz, J., Rissel, M.Y., Guillouzo, A., and Bereziat, G. (1988) Essential Fatty Acid Pattern of Glycerolipids in Rat Hepatocytes in Primary Culture and in Coculture with Rat Liver Epithelial Cells,Lipids 23, 784–790.

    Article  PubMed  CAS  Google Scholar 

  39. Hyman, B.T., Stoll, L.L., and Spector, A.A. (1981) Accumulation of n−9-Eicosatrienoic Acid in Confluent 3T3-L1 and 3T3 Cells,J. Biol. Chem. 256, 8863–8866.

    PubMed  CAS  Google Scholar 

  40. Aveldano, M.I., Rotstein, N.P., and Vermouth, N.T. (1992) Occurrence of Long and Very Long Polyenoic Fatty Acids of the n−9 Series in Rat Spermatozoa,Lipids 27, 676–680.

    PubMed  CAS  Google Scholar 

  41. Aveldano, M.I., Rotstein, N.P., and Vermouth, N.T. (1992) Lipid Remodelling During Epididymal Maturation of Rat Spermatozoa: Enrichment in Plasmenylcholines Containing Long-Chain Polyenoic Fatty Acids of the n−9 Series,Biochem. J. 283 235–241.

    PubMed  CAS  Google Scholar 

  42. Selivonchick, D.P., Schmid, P.C., Natarajan, V., and Schmid, H.H.O. (1980) Structure and Metabolism of Phospholipids in Bovine Epididymal Spermatozoa,Biochim. Biophys. Acta 618, 242–254.

    PubMed  CAS  Google Scholar 

  43. Nikolopoulou, M., Soucek, D.A., and Vary, J.C. (1985) Changes in the Lipid Content of Boar Sperm Plasma Membranes During Epididymal Maturation,Biochim. Biophys. Acta 815, 486–498.

    Article  PubMed  CAS  Google Scholar 

  44. Tocher, D.R., Carr, J., and Sargent, J.R. (1989) Polyunsaturated Fatty Acid Metabolism in Fish Cells: Differential Metabolism of n−3 and n−6 Series Acids by Cultured Cells Originating from a Freshwater Teleost Fish and from a Marine Teleost Fish,Comp. Biochem. Physiol. 94B, 367–374.

    CAS  Google Scholar 

  45. Tocher, D.R. (1990) Incorporation and Metabolism of n−3 and n−6 Polyunsaturated Fatty Acids in Phospholipid Classes in Cultured Rainbow Trout (Salmo gairdneri) Cells,Fish Physiol. Biochem. 8, 239–249.

    Article  CAS  Google Scholar 

  46. Tocher, D.R., and Dick, J.R. (1990) Incorporation and Metabolism of n−3 and n−6 Polyunsaturated Fatty Acids in Phospholipid Classes in Cultured Atlantic Salmon (Salmo salar) Cells,Comp. Biochem. Physiol. 96B, 73–79.

    CAS  Google Scholar 

  47. Tocher, D.R., and Mackinlay, E.E. (1990) Incorporation and Metabolism of n−3 and n−6 Polyunsaturated Fatty Acids in Phospholipid Classes in Cultured Turbot (Scophthalmus maximus) Cells,Fish Physiol. Biochem. 8, 251–260.

    Article  CAS  Google Scholar 

  48. Tocher, D.R., and Sargent, J.R. (1990) Effect of Temperature on the Incorporation into Phospholipid Classes and Metabolismvia Desaturation and Elongation of n−3 and n−6 Polyunsaturated Fatty acids in Fish Cells in Culture,Lipids 25, 435–442.

    Article  CAS  Google Scholar 

  49. Bell, J.G., and Sargent, J.R. (1992) The Incorporation and Metabolism of Polyunsaturated Fatty Acids in Phospholipids of Cultured Cells from Chum Salmon (Oncorhynchus keta),Fish Physiol. Biochem. 10, 99–109.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Tocher, D.R., Dick, J.R. & Sargent, J.R. Occurrence of 22∶3n−9 and 22∶4n−9 in the lipids of the topminnow (Poeciliopsis lucida) hepatic tumor cell line, PLHC-1. Lipids 30, 555–565 (1995). https://doi.org/10.1007/BF02537031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537031

Keywords

Navigation