Skip to main content
Log in

Sesamin (a compound from sesame oil) increases tocopherol levels in rats fedad libitum

  • Article
  • Published:
Lipids

Abstract

Six groups of rats were fed diets low, but adequate, in α-tocopherol but high in γ-tocopherol. The six diets differed only in their contents (0, 0.25, 0.5, 1.0, 2.0, and 4.0 g/kg, respectively) of sesamin, a lignan from sesame oil. After four weeks ofad libitum feeding, the rats were sacrificed and the concentrations of α- and γ-tocopherols were measured in the plasma, livers, and lungs. Sesamin-feeding increased γ-tocopherol and γ-/α-tocopherol ratios in the plasma (P<0.05), liver (P<0.001), and lungs (P<0.001). The increase was non-significant for α-tocopherol. Thus, sesamin appears to spare γ-tocopherol in rat plasma and tissues, and this effect persists in the presence of α-tocopherol, a known competitor to γ-tocopherol. This suggests that the bioavailability of γ-tocopherol is enhanced in phenol-containing diets as compared with purified diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-T:

α-tocopherol

γ-T:

γ-tocopherol

GTL:

γ-tocopherol levels

HPLC:

high-performance liquid chromatography

SL:

sesamin levels

References

  1. Weiss, E.A. (1983)Oilseed Crops, pp. 292–294, Tropical Agricultural Series, Longman, London.

    Google Scholar 

  2. Budowski, P., and Markely, K.S. (1951) The Chemical and Physiological Properties of Sesame Oil,Chem. Revs. 48, 125–151.

    Article  CAS  Google Scholar 

  3. Budowski, P. (1964) Recent Research on Sesamin, Sesamolin and Related Compounds,J. Am. Oil Chem. Soc. 41, 280–285.

    CAS  Google Scholar 

  4. Kamal-Eldin, A., and Appelqvist, L-Å. (1994) Variations in Fatty Acid Composition of the Different Acyl Lipids in Seed Oils from FourSesamum Species,J. Am. Oil Chem. Soc. 71, 135–139.

    CAS  Google Scholar 

  5. Kamal-Eldin, A., and Appelqvist, L-Å. (1994) Variations in the Composition of Sterols, Tocopherols and Lignans in Seed Oils from FourSesamum Species,J. Am. Oil Chem. Soc. 71, 149–156.

    CAS  Google Scholar 

  6. Kamal-Eldin, A., Yousif, G., Iskander, G.M., and Appelqvist, L-Å. (1992) Seed Lipids ofSesamum Indicum, L. and Related Wild Species in Sudan. I. Fatty Acids and Triacylglycerols,Fat Sci. Technol. 94, 254–259.

    CAS  Google Scholar 

  7. Spencer, G.F., Herb, S.F., and Gormisky, P.J. (1976) Fatty Acid Composition as a Basis for Identification of Commerical Fats and Oils,J. Am. Oil Chem. Soc. 53, 94–96.

    CAS  Google Scholar 

  8. Kamal-Eldin, A., Appelqvist, L-Å., and Yousif, G. (1994) Lignan Analysis in Seed Oils from FourSesamum Species: Comparison of Different Chromatographic Methods,J. Am. Oil Chem. Soc. 71, 141–147.

    CAS  Google Scholar 

  9. Osawa, T. (1992) Phenolic Antioxidants in Dietary Plants as Antimutagenes, inPhenolic Compounds in Food and Their Effects on Health. II. Antioxidants and Cancer Prevention (Hang, M-T., Ho, C-T., and Lee, C.Y., eds.), ACS Symposium Series 507, American Chemical Society, Washington D.C., pp. 135–149.

    Google Scholar 

  10. Fukuda, Y., Nagata, Y., Osawa, T., and Namiki, M. (1986) Chemical Aspects of the Antioxidative Activity of Roasted Sesame Seed Oil and the Effects of Using the Oil for Frying,Agric. Biol. Chem. 50, 857–862.

    CAS  Google Scholar 

  11. Fukuda, Y., Osawa, T., Namiki, M., and Ozaki, T. (1985) Studies on Antioxidative Substances in Sesame Seed,Agric. Biol. Chem. 49, 301–306.

    CAS  Google Scholar 

  12. Katsuzaki, H., Kawasumi, M., Kawakishi, S., and Osawa, T. (1992) Structures of Novel Antioxidative Lignan Glucosides Isolated from Sesame Seed,Biosci. Biotechn. Biochem. 56, 2087–2088.

    CAS  Google Scholar 

  13. Katsuzaki, H., Kawakishi, S., and Osawa, T. (1994) Sesaminol Glucosides in Sesame Seeds,Phytochemistry 35, 773–776.

    Article  PubMed  CAS  Google Scholar 

  14. Katsuzaki, H., Kawakishi, S., and Osawa, T. (1993) Structure of Novel Antioxidative Lignan Triglucoside Isolated from Sesame Seed,Heterocycles 36, 933–936.

    CAS  Google Scholar 

  15. Tobin, C.E. (1941) Effects of Adrenolactomy on Pregnancy and Survival of Untreated and Sesame Oil-treated Rats,Endocrinology 28, 419–425.

    Article  CAS  Google Scholar 

  16. Chou, T.C., and Marlatt, A.L. (1953) Factors in the Chinese Diet Affecting Carotene Utilization,J. Nutr. 51, 305–315.

    PubMed  CAS  Google Scholar 

  17. Ershoff, B.H. (1960) Effects of Diet on Fish Oil Toxicity in the Rat,J. Nutrition 71, 45–53.

    CAS  Google Scholar 

  18. Singhal, P.C., and Joshi, L.D. (1980) Glycemic and Cholesterolemic Role of Ginger and Til,J. Sci. Res. Plants Med. 4, 32–34.

    Google Scholar 

  19. Sugano, M., Inoue, T., Koba, K., Yoshida, K., Hirose, N., Shinmen, Y., Akimoto, K., and Amachi, T. (1990) Influence of Sesame Lignans on Various Lipid Parameters in Rats,Agric. Biol. Chem. 54, 2669–2673.

    CAS  Google Scholar 

  20. Hirose, N., Inoue, T., Nishihara, K., Sugano, M., Akimoto, K., Shimizu, S., and Yamada, H. (1991) Inhibition of Cholesterol Absorption and Synthesis in Rats by Sesamin,J. Lipids Res. 32, 629–638.

    CAS  Google Scholar 

  21. Shimizu, S., Akimoto, K., Shinnen, Y., Kawashima, H., Sugano, M., and Yamada, H. (1991) Sesamin is a Potent and Specific Inhibitor of Δ5-Desaturase in Polyunsaturated Fatty Acid Biosynthesis,Lipids 26, 512–516.

    Article  PubMed  CAS  Google Scholar 

  22. Namiki, M., and Osawa, T. (1986) Antioxidants/Antimutagens in Foods, inAntiomutagenesis and Anticarcinogenesis Mechanisms (Shankel, D.M., Hartman, P.E., Kada, T., and Hollaender, A., eds.), Plenum Publishing Corporation, New York, pp. 131–142.

    Google Scholar 

  23. Yamashita, K., Kawagoe, Y., Nohara, Y., Namiki, M., Osawa, T., and Kawagishi, S. (1990) Effect of Sesame in the Senescence-Accelerated Mouse,J. Jpn. Soc. Nutr. Food Sci. 43, 445–449.

    CAS  Google Scholar 

  24. Yamashita, K., Nohara, Y., Katayama, K., and Namiki, M. (1992) Sesame Seed Lignans and γ-Tocopherol Act Synergistically to Produce Vitamin E Activity in Rats,J. Nutr. 122, 2440–2446.

    PubMed  CAS  Google Scholar 

  25. Behrens, W.A., and Madere, R. (1983) Interrelationship and Competition of α- and γ-Tocopherol at the Level of Intestinal Absorption, Plasma Transport and Liver Uptake,Nutr. Res. 3, 891–897.

    Article  CAS  Google Scholar 

  26. Behrens, W.A., and Madere, R. (1987) Mechanism of Absorption, Transport and Tissue Uptake of RRR-α-Tocopherol and d-γ-Tocopherol in the White Rat,J. Nutr. 117, 1562–1569.

    PubMed  CAS  Google Scholar 

  27. Handelman, G.J., Machlin, L.J., Fitch, K., Weiter, J.J., and Dratz, E.A. (1985) Oral α-Tocopherol Supplements Decrease Plasma γ-Tocopherol Levels in Humans,J. Nutr. 115 807–813.

    PubMed  CAS  Google Scholar 

  28. Baker, H., Handelman, G.J., Short, S., Machlin, L.J., Bhagavan, H.N., Dratz, E.A., and Frank, O. (1986) Comparison of Plasma α- and γ-Tocopherol Levels Following Chronic Oral Administration of All-rac-α-Tocopheryl Acetate or RRR-α-Tocopheryl Acetate in Normal Adult Male Subjects,Am. J. Clin. Nutr. 43, 382–387.

    PubMed  CAS  Google Scholar 

  29. Lehmann, J., Rao, D.D., Canary, J.J., and Judd, J.T. (1988) Vitamin E and Relationships Among Tocopherols in Human Plasma, Platelets, Lymphocytes and Red Blood Cells,Am. J. Clin. Nutr. 47, 470–474.

    PubMed  CAS  Google Scholar 

  30. Hakkarainen, J., Työppönen, J., and Jönsson, L. (1986) Vitamin E Requirement of the Growing Rat During Selenium Deficiency with Special Reference to Selenium Dependent and Selenium Independent Glutathione Peroxidase,J. Vet. Med. Associ. 33, 247–258.

    Article  CAS  Google Scholar 

  31. Hara, A., and Radin, N.S. (1978) Lipid Extraction of Tissues with a Low-Toxicity Solvent,Anal. Biochem. 90, 420–426.

    Article  PubMed  CAS  Google Scholar 

  32. Statistical Analysis Systems Institute, Inc. (1989)SAS User's Guide, Version 6, Fourth Edn., SAS Institute Inc., Cary, North Carolina.

    Google Scholar 

  33. Bieri, J.G., and Evarts, R.P. (1974) Tocopherols and Fatty Acids in American Diets,J. Am. Diet. Assoc. 62, 147–151.

    Google Scholar 

  34. Lehmann, J., Martin, H.L., Lashley, E.L., Marshall, M.W., and Judd, J.T. (1986) Vitamin E in Foods from High and Low Linoleic Acid,J Am. Diet. Assoc. 86, 1208–1216.

    PubMed  CAS  Google Scholar 

  35. Bieri, J.G., and Evarts, R.P. (1974) Vitamin E Activity of γ-Tocopherol in the Rat, Chick and Hamster,J. Nutr. 104, 850–857.

    PubMed  CAS  Google Scholar 

  36. Dillard, C.J., Gavino, V.C., and Tappel, A.L. (1983) Relative Antioxidant Effectiveness of α-Tocopherol and γ-Tocopherol in Iron-Loaded Rats,J. Nutr. 113, 2266–2273.

    PubMed  CAS  Google Scholar 

  37. Burton, G.W., Joyce, A., and Ingold, K.U. (1983) Is Vitamin E the Only Lipid-Soluble, Chain-Breaking Antioxidant in Human Blood Plasma and Erythrocyte Membranes?Arch. Biochem. Biophys. 221, 281–290.

    Article  PubMed  CAS  Google Scholar 

  38. Burton, G.W., and Ingold, K.U. (1986) Vitamin E: Application of the Principles of Physical Organic Chemistry of the Explanation of Its Structure and Function,Acc. Chem. Res. 19, 194–201.

    Article  CAS  Google Scholar 

  39. Diplock, A.T. (1983) The Role of Vitamin E in Biological Membranes, inBiology of Vitamin E (Porter, R., and Whelan, J., eds.), pp. 45–55, Pitman, London.

    Google Scholar 

  40. Bieri, J.G., and Evarts, R.P. (1974) Gamma-Tocopherol: Metabolism, Biological Activity and Significance in Human Vitamin E Nutrition,Am. J. Clin. Nutr. 27, 980–986.

    PubMed  CAS  Google Scholar 

  41. Peake, I.R., Windmueller, H.G., and Bieri, J.G. (1972) A Comparison of the Intestinal Absorption, Lymph and Plasma Transport and Tissue Uptake of α- and γ-Tocopherols in the Rat,Biochem. Biophys. Acta 260, 679–688.

    PubMed  CAS  Google Scholar 

  42. Traber, M.G., Kayden, H.J., Green, J.B., and Green, M.H. (1986), Absorption of Water Miscible Forms of Vitamin E in a Patient with Cholestasis and in Thoracic Duct-Cannulated Rats,Am. J. Clin. Nutr. 44, 914–923.

    PubMed  CAS  Google Scholar 

  43. Traber, M.G., and Kayden, H.J. (1989) Preferential Incorporation of α-Tocopherol Versus γ-Tocopherol in Human Lipoproteins,Am. J. Clin. Nutr. 49, 517–526.

    PubMed  CAS  Google Scholar 

  44. Gloor, U., Wursh, J., Schwieter, U., and Wiss, O. (1966) Resorption, Retention, Veterilung und Stoffwechsel des d,1-α-Tocopherolamines, d,1-N-Methyl-γ-Tocopherolamines und des γ-Tocopherol in Vergleich zum d,1-α-Tocopherol bei der Ratte,Helv. Chim. Acta 49, 2303–2312.

    Article  CAS  Google Scholar 

  45. Peake, I.R., and Bieri, J.G. (1971) Alpha- and Gamma-Tocopherols in the Rat:in vitro andin vivo Tissue Uptake and Metabolism,J. Nutr. 101, 1615–1622.

    PubMed  CAS  Google Scholar 

  46. Tran, K., and Chan, A.C. (1992) Comparative Uptake of α- and γ-Tocopherol by Human Endothelial Cells,Lipids 27, 38–41.

    PubMed  CAS  Google Scholar 

  47. Meydani, M., Cohn, J.S., Macauley, J.B., McNamara, J.R., Blumberg, J.B., and Schaefer, E.J. (1989) Postprandial Changes in the Plasma Concentration of α- and γ-Tocopherols in Human Subjects Fed a Fat-rich Meal Supplemented with Fat-soluble Vitamins,J. Nutr. 119, 1252–1258.

    PubMed  CAS  Google Scholar 

  48. Traber, M.G., Burton, G.W., Hughes, L., Ingold, K.U., Hidaka, H., Malloy, M., Kane, J., Hyams, J., and Kayden, H.J. (1992) Discrimination Between Forms of Vitamin E by Humans with and Without Genetic Abnormalities of Lipoprotein Metabolism,J. Lipid Res. 33, 1171–1182.

    PubMed  CAS  Google Scholar 

  49. Shahidi, F., and Wanasundara, J.P.D. (1992) Phenolic Antioxidants,Crit. Revs. Food Sci. Nutr. 32, 67–103.

    Article  CAS  Google Scholar 

  50. Evans, H.M., and Bishop, K.S. (1922) On the Existence of a Hitherto Unrecognized Dietary Factor Essential for Reproduction,Science 56, 650–651.

    Article  CAS  PubMed  Google Scholar 

  51. Steele, C.E., Jeffery, E.H., and Diplock, A.T. (1974) The Effect of Vitamin E and Synthetic Antioxidants in the Growthin vitro of Explanted Rat Embryos,J. Reprod. Fert. 38, 115–123.

    Article  CAS  Google Scholar 

  52. Cassida, J.E. (1970) Mixed Function Oxidase Involvement in the Biochemistry of Insecticidal Synergists,J. Agric. Food Chem. 18, 753–772.

    Article  Google Scholar 

  53. Mason, H.S., North, J.C., and Vanneste, M. (1965) Microsomal Mixed-Function Oxidations: The Metabolism of Xenobiotics,Fed. Proc. 24, 1172–1180.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kamal-Eldin, A., Pettersson, D. & Appelqvist, LÅ. Sesamin (a compound from sesame oil) increases tocopherol levels in rats fedad libitum . Lipids 30, 499–505 (1995). https://doi.org/10.1007/BF02537023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537023

Keywords

Navigation