The evolution of reef structures through time: Importance of tectonic and biological controls

Entwicklung von Riffstrukturen in der Zeit: Tektonische und biologische Kontrolle

Summary

The evolution of reefs is controlled by biological and global factors. The paper stresses the importance of the tectonic and paleogeographical control.

The evolution of reefs is reflected by the changes in the composition of reef-building communities during geological time, by changes in the mineralogical composition of reef carbonates, and by changes in types, sizes and tectonic settings of reefs.

The composition of reef-building communities is characterized by the development of new adaptive patterns with decreasing diversity, by migration of reef-building organisms to low-level communities, and by total or partial extinction of reef organisms.

Several changes in the composition of reef carbonates (calcite, Mg-calcite, aragonite), strongly dependent on the skeletal mineralogy of the reef organisms, are evident during Riphean and Phanerozoic times. These changes coincide only roughly with the long-time intervals recognized for the mineralogical composition of non-reefal carbonates.

Reef types started with the small organic buildups of the Proterozoic and the Early Cambrian followed by the differentiated reefs of the late Cambrian, thedome-shaped pinnacle reefs and atolls of the Ordovician, and the strongly differentiated reef-complexes of the Silurian and Devonian. The importance of bioherms decreased during the Mesozoic and Caenozoic.

Reef structures increased in size during geological time from Precambrian and Cambrian (height=elevation above off-reef basinal bottom: several meters) to Ordovician (height several hundreds of meters), Devonian (more than 1000 meters) to Caenozoic reefs (up to 2000 meters). Increase in thickness (of the total reef structure) and elevation above sea bottom was connected with an increase in the number of facies types.

Paleozoic reefs occur in different tectonic settings (platforms, geosynclines, marginal troughs). Mesozoic and Cenozoic reefs are concentrated in geosynclinal settings but occur also on platforms.

Regarding the paleogeographical location, many Paleozoic reefs are concentrated at the margins of extrageosynclinal deep-water troughs or in front of extended shelf back-reef areas. Another common location is the continental margin. Paleozoic reefs are situated at the western margins in contrast to Cenozoic reefs which are concentrated at eastern margins. Open-marine oceanic reefs developed during the Caenozoic

Major controls in the development of reef structures are, beside sea level fluctuations, variations in the growth rates of reef organisms and differences in the subsidence rates. The striking discrepancy between the high growth potential of reef builders and low growth rates of reef structures supports the explanation that the control by subsidence rates might have been more important than biological controls. Increasing subsidence rates from the Precambrian to the Caenozoic seem to have been responsible for the change in types and sizes of reefs. Tectonic stability and instability should be one of the reef carbonates (platform carbonates). Maxima of reef development coincide with periods characterized by tectonic destabilization and reduction of the non-reef carbonate sedimentation, connected with a reduction of the shallowmarine sedimentation area.

Formation of reefs and deposition of non-reef shelf carbonates are strongly controlled by tectonic and paleogeomorphical conditions:

Pronounced subsidence and the existence of a distinct submarine relief favour the formation of reef carbonates wheras non-reef carbonates are formed in times of stable tectonic conditions, resulting in the existence of wide basins with rather uniform relief. The total rock volume of reef carbonates is low as compared with that of non-reef carbonates but the relative importance of reef carbonates (and perhaps also the development of new reef guilds, see Fig. 1) seems to increase during time, connected with an increase in tectonic movements. This is shown also by the recent and Late Caenozoic examples characterized by the reduction of non-reef carbonate sedimentation caused by the reduction of shallow-marine shelf seas favourable for large-scaled carbonate deposition, and by the relatively low sea-level which supports a strong influx of erosional material. Half of the recent shallow-marine carbonates, therefore, are produced by reefs (Smith 1978).

This is a preview of subscription content, access via your institution.

References

  1. Barss, D.L., Copland, A.B. & Ritchie, W.D. (1970): Geology of Middle Devonian Feers Rainbow Area, Alberta, Canada.-In:Halbouty, M.T. (ed.): Geology of Giant Petroleum Fields, 19–49, 25 Figs., Tulsa

  2. Billings, G.K. &Ragland, P.S. (1968): Geochemistry and mineralogy of the recent reef and lagoonal sediments south of Belize (British Honduras).—Chem. Geol.,3, 135–153, Amsterdam

    Article  Google Scholar 

  3. Cowen, R. (1988): The Role of Algal Symbiosis in Reefs Through Time.—Palaios,3/2, 221–227, 2 Figs., Ann Arbor

    Google Scholar 

  4. Chester, R. (1965). Geochemical criteria for differentiating reef from non-reef facies in carbonate rocks.—Bull. Amer. Ass. Petrol. Geol.,49/3, 258–276, Tulsa

    Google Scholar 

  5. Chester, R. &Messina-Hanna, R.G. (1970): Trace element partion patterns in NorthAtlantic deep-sea sediments.—Geochim. Cosmochim. Acta,34/10, 1121–1128, Oxford

    Article  Google Scholar 

  6. Chuvashov, B. &Riding, R. (1984). Proncipal floras of Paleozoic marine calcareous algae.—Palaeontology,27, 487–500, London

    Google Scholar 

  7. Crawford, G.A. (1989): Goat Seep-precursor to the Capitan.-In:Harris, P.M. & Grover, G.A. (eds.): Subsurface and Outcrop Examination of the Capitan Shelf Margin, Northern Deleware Basin. Soc. Econ. Paleont. Min. Core Workshop, San Antonio,13, 373–377, 2 figs., Tulsa

  8. Davies, G.R. (1977): Former magnesian calcite and aragonite submarine cements in Upper Paleozoic reefs of Canadian Arctic: A summary.—Geology,5/1, 11–15, Boulder

    Article  Google Scholar 

  9. Davies, P.J. (1972): Trace element distribution in reef and subreef rocks of Jurassic age in Britain and Switzerland.—J. Sed. Petrol.,42/1, 183–194, Tulsa

    Google Scholar 

  10. Davydov, Yu.V. (1975): Rifeiskie karbonatnye otlozheniya yugovostoka Sibirskoi platformy o eyo obramleniya.—Trudy IG i GSO, Akad. Nauk SSSR,207, 108 p., 25 pls., 26 figs., 12 tables, Novosibirsk

  11. Emery, K.O., Tracey, J.I. Jr. &Ladd, H.S. (1954): Geology of Bikini and nearby atolls.—Geol. Surv. Prof. Papers,260-A, 265 p., Washington

  12. Fagerstrom, J.A. (1987): The Evolution of Reef Communities.— 600 p., New York (Wiley)

    Google Scholar 

  13. Fischer, A.G. (1963): Growth patterns of Silurian Tabulata as paleoclimatologic and paleogeographic tools.—In:Nairn, E.M. (ed.): Problems in Paleoclimatology, 608–615, London

  14. Flügel, E. (1975, ed.): Guide Book International Symposium on Fossil Algae.—228 p., Erlangen (Inst. Paläont. Univ. Erlangen-Nürnberg).

    Google Scholar 

  15. — (1982): Evolution of Triassic Reefs: Current Concepts and Problems.—Facies,6, 297–328, Erlangen

    Google Scholar 

  16. Flügel, H.W. &Wedepohl, K.H. (1967): Die Verteilung des Strontiums in oberjurassischen Karbonatgesteinen der nördlichen Kalkalpen.—Contrib. Min. Petrol.,14/3, 229–249, Berlin

    Article  Google Scholar 

  17. Füchtbauer, H. &Richter, D.K. (1988): Karbonatgesteine. In:Füchtbauer, H. (1988, ed.): Sediment-Petrologie Teil II, Sedimente und Sedimentgesteine. 4. edition, 233–434, Stuttgart (Schweizerbart)

    Google Scholar 

  18. Garetski, R.G. &Yanshin, A.L. (1970): O rasprostranenii glubokovodnykh osadkov v razrezakh skladchatykh oblastei.—Izvestiya Akad. Nauk SSR, Ser. Geol.,1970/4, 112–124, Moskva

    Google Scholar 

  19. Geister, J. (1983): Holozäne westindische Korallenriffe: Geomorphologie, Ökologie und Fazies.—Facies,9, 173–284, Erlangen

    Google Scholar 

  20. Geldsetzer, H.H.J., James, N.P. & Tebbutt, G.E. (1988): Reefs. Canada and Adjacent Areas.—Canadian Soc. Petrol. Geol. Mem.,13, 775 p., Calgary

  21. Heckel, P.H. (1972): Recognition of Ancient Shallow Marine Environments.—Soc. Econ. Paleont. Min. Spec. Publ.,16, 226–286, 15 Figs., Tulsa

    Google Scholar 

  22. Hoskin, C.M. (1968): Magnesium and strontium in mud fraction of recent carbonate sediments, Alacran Reef, Mexico.—Bull. Amer. Ass. Petrol. Geol.,52/11, 2170–2177, Tulsa

    Google Scholar 

  23. James, N.P. & Macintyre, I.G. (1985): Carbonate Depositional Environments. Modern and Ancient. Part 1: Reefs. Zonation, Depositional Facies, Diagenesis.—Colorado School Mines Quart.,80/3, 70 p., 65 figs., Golden

  24. Kazanskii, Yu.P. (1974): Ob izmenenii kharaktera morskogo karbonatonakopleniya v istorii Zemli.—In: Karbonatnye porody Sibiri, 148–183, 9 tables, Novosibirsk

  25. Klaaman, E.R. &Nestor, K.B. (1968): Rol rifovoi fatsii v formirovanii fauny stromatoporoidei i tabulyat ordovika i silura Estonii.—Iskopaemye rify i metodika ikh izucheniya, 79–83, 2 figs., 1 table, Sverdlovsk (Sverdlovsk knizhnoe Izdatelstvo)

    Google Scholar 

  26. Krasnov, Ye.V. (1979): Simbioz i koadantatsii v evoliutsii rifovoykh skleraktiniy. Trudy biologo-pochvennogo instituta, Novaya seriya,N 52 (155), 103–108, 2 tables, Moskva

    Google Scholar 

  27. Kuzminskaya, K.S. &Khain, V.E. (1964): Razvitie riofov v istorii Zemli.—In: Zhizn Zemli, no. 2, 31–43, 15 figs., Moskva (Izdatelstvo Mosk. gos. universiteta)

    Google Scholar 

  28. Kuznetsov, V.G. (1975): O vozmozhnoi geokhimicheskoi spetsializatsii rifov (na primere raspredeleniya strontsiya).—In: Litologiya i paleografiya biogermnykh massivov, 21–44, 8 figs., 7 tables, Moskva (Nauka)

    Google Scholar 

  29. — (1978): Geologiya rifov i ikh neftegazonosnost.— 304 p., 80 figs., 10 tables, Moskva (Nedra)

    Google Scholar 

  30. — (1983): Nekorye cherty evolutsii rifoobrazovaniy i istorii Zemli. —In: Evolutsiya osadochnogo protsessa v okeanakh i na kontinentakh, 162–173, 2 figs., Moskva (Nauka)

    Google Scholar 

  31. — (1986): Karbonatonakopleniya na rifakh i yego evolutsiya v istorii Zemli.—In: Fanerozoiskie i rify i korally SSSR, 110–123, 3 figs., Moskva (Nauka)

    Google Scholar 

  32. Kuznetsov, V.G. &Piip, N.B. (1974): Strontsii v turneiskikh otlozheniyakh Orenburgskoi oblasti.—Geokhimiya, no. 4, 585–593, 5 figs., 5 tables, Moskva

    Google Scholar 

  33. Kuznetsov, V.G. &Postnikova, O.V. (1988): Geometry and Internal Structure of Subsurface Lower Cambrian Reefs of the Siberian Platform: Osinsky Horizon (Aldanian), Nepsko-Botoubinsky Anteclise, Southern Siberia.—Facies,19, 259–270, pl. 42, 5 figs., 1 table, Erlangen

    Google Scholar 

  34. Laporte, L.F. (1974, ed.): Reefs in Time and Space. Selected examples from the recent and ancient.—Soc. Econ. Paleont. Min. Spec. Publ.,18, 256 p., Tulsa

  35. Leites, A.M. (1965): Nizhnii proterozoi severo-vostoko Olekmo-Vitimskoi gornoi strany.—Trudy geol. inst. Akad. Nauk SSSR,122, 184 p., 52 figs., 17 tables, Moskva

  36. Lowenstam, H.A. (1963): Biologic problems related to the composition and diagenesis of sediments.—In: The Earth Sciences —Problems and Progress in Current Research, 137–195, Chicago (Univ. Chicago Press)

    Google Scholar 

  37. Ma, T. (1966): The effect of water temperature on growth rate of reef corals.—Oceanographica Sinica, Spec. Vol.,10, Taipei

  38. Maslov, V.P. (1963): Vodorosli, mokhoobraznye, psilofitovoye, plaunnovidnye, chlenistostebelnye, paportniki.—Osnovy Paleontologii, 698 p., 34 pls., 198 figs., Moskva (Izdatelstvo Akad. Nauk SSSR)

    Google Scholar 

  39. Minayeva, M.A. & Pisarchik, Ya.K. (1974): O karbonatnykh otlozheniakh zony razvitiya arkheotsiatovykh biogermov na yugovostoke Sibirskoi platformy.—In: Karbonatnye porody Sibiri, 34–41, 1 fig., Novosibirsk

  40. Newell, N.D. (1972): The evolution of reefs.—Sci. Amer.,226/6, 54–56, New York

    Article  Google Scholar 

  41. Peive, A.V. (1969): Okeanicheskaya kora geologicheskogo proshlogo. —Geotektonika,4, 5–23, 10 figs., Moskva

    Google Scholar 

  42. Ravikovich, A.J. (1954): Sovremennye i iskopaemye rify.—170 p., 41 figs., Moskva (Izdatelstvo Akad. Nauk SSSR)

    Google Scholar 

  43. Ravikovich, A.J. & Zhuravlova, I.T. (1975): Evolutsia organogennych postroek v istorii Zemli.—In: Drevnie Cnidaria, II, Trudy IG i GSO Akad. Nauk SSSR,202, 1–19, 6 figs., Novosibirsk

  44. Rigby, J.K. (1971): Sponges and reef and related facies through time.—Proc. Northerm Amer. Paleontol. Convention, Lawrence, 1374–1388, Chicago

  45. Ronov, A.B. (1980): Osadochnaya obolochka Zemli. Kolichestvenye zakonomemosty stroyeniya, sostova i evolutsii, 80 p., 21 figs., 17 tables, Moskva (Nauka)

    Google Scholar 

  46. Sandberg, P.A. (1983): An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy.—Nature,305, 19–22, London

    Article  Google Scholar 

  47. Schlager, W. (1981): The paradox of drowned reefs and carbonate platforms.—Geol. Soc. Amer. Bull.,92, 197–211, New York

    Article  Google Scholar 

  48. Schroeder, J. &Purser, B.H. (1986, eds): Reef Diagenesis.— 455 p., Berlin (Springer)

    Google Scholar 

  49. Smith, S.V. (1978): Coral-reef area and the contribution of reefs to processes and resources of the World's Ocean.—Nature,273/5659, 225–236, London

    Article  Google Scholar 

  50. Sokolov, B.S. (1948): Kommensalizm v favozitid.—Izvestiya Akad. Nauk SSSR, Ser. biol., no. 1, 101–110, 10 figs., Moskva

    Google Scholar 

  51. Stanley, G.D. & Fagerstrom, J.A. (1988, eds.): Ancient Reef Ecosystems Theme Issue.—Palaios,3/2, 110–250, Ann Arbor

    Google Scholar 

  52. Stehli, F.G. &Hower, J. (1961): Mineralogy and early diagenesis of carbonate sediments.—J. Sed. Petrol.,31/3, 358–371, Tulsa

    Google Scholar 

  53. Talent, J.A. (1988): Organic reef-building: episodes of extinction and symbiosis?—Senckenbergiana lethaea,69, 315–368, 1 fig., Frankfurt

    Google Scholar 

  54. Tröger, K.-A., Kozur, H., Ruchholz, K., Watznauer, A. &Kahlke, H.D. (1984): Abriß der Historischen Geologie, 718 S. 48 pls., 132 figs., 28 tables, Berlin (Akademie-Verlag)

    Google Scholar 

  55. Turekian, K.K. &Kulp, J. (1956): The Geochemistry of Strontium. —Geochim. Cosmochim. Acta,10, 245–296, London

    Article  Google Scholar 

  56. Vinogradov, A.P., Ronov, A.B. &Ratynsky, V.M. (1952): Evolutsia khimicheskogo sostava karbonatnykh porod.—In: Soveschanie po osadochnym porodam, 1, 104–123, 12 figs., 2 tables, Moskva (Izdatelstvo Akad. Nauk SSSR)

    Google Scholar 

  57. Vologdin, A.G. (1962): Gubki, arkheotsiaty, kishechnopolostnye, chervi.—Osnovy Paleontologii, 485p., 102 pls., 661 figs., Moskva (Izdatelsvo Akad. Nauk SSSR)

    Google Scholar 

  58. Wilkinson, B.H. (1982): Cyclic cratonic carbonates and Phanerozoic calcite seas.—J. Geol. Education,30, 189–203, Washington

    Google Scholar 

  59. Zhuravleva, I.T. (1972): Rannekembriiskie fatsialnye kompleksy arkeotsiat.—In: Problemy biostratiografii i paleontologii nizhnego kembriya Sibiri, 31–109, 6 pls., 37 figs., 46 tables, Moskva (Nauka)

    Google Scholar 

  60. Zhuravleva, I.T. &Luchinina, V.A. (1977): Vodorosli i organogennye postroiki.—In: Sreda i zhizn v geologicheskom proshlom. Fatsii i organizmy, 103–113, 1 table, Novosibirsk (Nauka)

    Google Scholar 

  61. Zhuravleva, I.T. &Ravikovich, A.I. (1973): Morfologia i evolutsiya organogennykh postroek.—In: Sredna i zhizn v geologichiskom proshlom. Pozdnii dokembrii i paleozoi Sibiri, 48–53, Novosibirsk (Nauka)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuznetsov, V. The evolution of reef structures through time: Importance of tectonic and biological controls. Facies 22, 159–168 (1990). https://doi.org/10.1007/BF02536950

Download citation

Keywords

  • Facies Analysis
  • Reefs
  • Carbonate Rocks
  • Phanerozoic