Advertisement

Facies

, 22:103 | Cite as

The Danian (Paleocene) coral limestone of Fakse, Denmark: A model for ancient aphotic, azooxanthellate coral mounds

  • Michaela Bernecker
  • Oliver Weidlich
Article

Summary

The Danish-Polish Trough—a northwest to southeast striking basin—is bordered by the Fennoscandian Shield in the north and the Ringköbing-Fyn High in the south. During the Late Cretaceous and Early Tertiary carbonate sedimentation prevailed. Locally small bryozoan mounds were formed during the Upper Maastrichtian. The bulk of bryozoan bioherms originated during the Danian B to C. Coral communities and coral mounds are confined to the Danian C. About five coral limestone localities occur within the Danish-Polish Trough; Fakse is the most important one.

Paleontological and sedimentological data of the coral limestones point to the interpretation of the coral reefs as “cold- and deep-water coral bioherms”.

Important criteria are the (1) absence of algae, (2) low-diverse azooxanthellate coral community, (3) dominance of dendroid growth forms in the corals, (4) surrounding pelagic facies adjacent to the coral mounds, (5) occurrence of pelagic organisms (globigerinid foraminifera, coccoliths) within the micrite of the mound facies and intermound facies, (6) breakdown of framebuilders predominantly by bioerosion instead of mechanical destruction, (7) mound- or bank-like structure of the buildups, (8) occurrence at a high paleolatitude.

Three major facies types can be distinguished: (1) bryozoan limestones, (2) transitional facies, and (3) coral limestones which include five subfacies types defined by the predominating coral taxa. Most coral mounds are composed of facies types 2 and 3.

Diagenesis is characterized by the formation of early marine-phreatic fibrous and bladed cements and by late diagenetic meteoric-phreatic dog-tooth cements and the replacement of calcite cements by quartz.

The mounds have an asymmetrical shape caused by unidirectional currents from the south. The maximum length is 200 m, the height 30 m and the width 80 m. The distribution of colonial corals within the mounds indicates a zonation pattern.

Framebuilders are represented only by azooxanthellate organisms: Colonial scleractinian corals, stylasterine hydrozoans and octocorals. Scleractinian corals have dendroid and arborescent growth forms, whereas hydrozoans and octocorals form fan-like colonies. Strong bioerosion of the framebuilding organisms was responsible for the breakdown of the skeletons; the bioclasts formed the substrate for other framebuilders. The soft bottom between the framebuilders was burrowed by bivalves and crustaceans.

The comparison with coral mounds occurring in the eastern Atlantic at similar latitudes and in a position comparable with that of the Paleocene Danish-Polish Trough suggests a paleodepth between 100 and 300 m.

Keywords

Facies analysis Carbonate diagenesis Reefs Deep-water coral mounds Aphotic environment Scleractinian corals hydrozoans Octocorals Denmark Tertiary (Danian) 

Der Korallenkalk aus dem Dan (Paläozän) von Fakse, Dänemark: Ein Modell für fossile aphotische, azooxanthellate Korallenriffe

Zusammenfassung

In der Oberkreide und im Alttertiär wurden im Dänisch-Polnischen Trog überwiegend Karbonate abgelagert. Erste Bryozoenbioherme sind bereits aus der Oberkreide bekannt. Die meisten der Bryozoen-Mounds entstanden jedoch im Dan B und C. Korallen bauten erst im Dan C biogene Strukturen auf. Von den etwa fünf Korallenkalk-Lokalitäten im Dänisch-Polnischen Trog ist Fakse auf grund der Aufschlußverhältnisse und der Mächtigkeit der Korallenkalke (ca. 50m) die wichtigste.

Paläontologische und sedimentologische Daten machen eine Deutung der Korallen-Mounds als “Kalt- und Tiefwasser-Riffe” wahrscheinlich.

Kriterien hierfür sind: (1) Fehlen von Algen, (2) geringdiverse azooxanthellate Korallenassoziation, (3) Überwiegen von dendroiden Wuchsformen unter den Korallen, (4) die die Mounds umgebende pelagische Fazies, (5) Beteiligung von pelagischen Organismen an der Mikritbildung, (6) Zerstörung der Gerüstbildnerskelette überwiegend durch Bioerosion (7) moundförmige Struktur der Riffe, (8) Vorkommen in einer hohen Paläobreite.

Innerhalb der Mounds treten drei Faziestypen auf:
  1. (1)

    Bryozoenkalk,

     
  2. (2)

    Übergangsfazies Korallenkalk/Bryozoenkalk,

     
  3. (3)

    Korallenkalk mit fünf Subfaziestypen, die anhand der jeweils dominierenden Korallengattungen unterschieden werden. Die Korallenmounds bestehen überwiegend aus den Faziestypen 2 und 3.

     

Die Diagenese ist durch frühdiagenetische marin-phreatische fibröse Zemente und spätdiagenetisch entstandene meteorisch-phreatische Hundezahnzemente sowie durch Verdrängung der karbonatischen Zemente durch Quarz charakterisiert.

Die Mounds wachsen asymmetrisch einer aus südlicher Richtung kommenden Strömung entgegen. Die maximale Länge der Mounds beträgt 200 m, die Höhe mindestens 30 m und die Breite 80 m. Die moundförmige Gestalt wird durch die interne Fazieszonierung verdeutlicht.

Die Gerüstbildner-koloniale Korallen, Hydrozoen und Oktokorallen-lebten, wie sich anhand der Morphologie nachweisen läßt, ohne Symbiose mit Zooxanthellen. Koloniebildende Scleractinier waren durch arborescente und dendroide Wuchsformen, die meisten Oktokorallen und Hydrozoen durch eine fächerförmige Wuchsform an eine heterotrophe Ernährung angepaßt. Durch starke Inkrustationen und intensive Anbohrung wurden die Gerüstbildner instabil und brachen leicht zusammen. Das Sediment zwischen ihnen war nicht lithifiziert.

Korallenmounds im SE-Atlantik in einer mit dem Dänisch-Polnischen Trog vergleichbaren Breite und Position legen eine Entstehung der Korallenmounds von Fakse in einer Tiefe von 100–300 m nahe.

References

  1. Allen, J.R.P. &Wells, J.W. (1962): Holocene coral banks and subsidence in the Niger Delta.—J. Geol.,70/4, 381–397 4 pls., 7 figs., 1 tab., ChicagoGoogle Scholar
  2. Asgaard, U. (1968): Brachiopod palaeoecology in Middle Danian limestone at Fakse, Denmark.—Lethaia,1, 103–121 7 figs., 1 tab., OsloGoogle Scholar
  3. Baartman, J. C. &Christensen, O. B. (1975): Contributions to the interpretation of the Fennoscandian border zone.—Denmarks geol. Unders.,2/102, 1–47, 3 pls., 4 figs., CopenhagenGoogle Scholar
  4. Bailey, R. H. &Tedesco, S. A. (1986): Paleoecology of a Pliocene coral thicket from North Carolina: an example of temporal change in community, structure and function.—J. Paleont.,60/6, 1159–1176, 13 figs., TulsaGoogle Scholar
  5. Bayer, F. M. (1956): Octocorallia.—In:Moore R. C. (ed.): Treatise on Invertebrate Paleontology, Part F Coelenterata, 166–231, figs. 134–162, LawrenceGoogle Scholar
  6. Bernecker, M. (1989): Aphotische Korallenmounds aus dem Alttertiär (Dan) von Fakse, Dänemark: Fazies und Ablagerungsmilieu eines nichttropischen Tiefwasserkorallenkalks.—Unpubl. Diplom Thesis, 76 pp., 17 pls., 22 figs., 7 tabs., Erlangen (Institut für Paläontologie)Google Scholar
  7. Boeckschoten, G. J. (1970): On bryozoan borings from the Danian at Fakse, Denmark.—In:Crimes, T.P. & Harper, J.C. (ed.): Trace Fossils, 43–48, 1 fig., LiverpoolGoogle Scholar
  8. Boschma, H. (1951): Notes on hydrocorallia.—Zool. Verhand.,13, 1–49, 2 pls., 6 figs., LeidenGoogle Scholar
  9. Boschma, H. (1956): Milleporina and Stylasterina.—In:Moore R. C. (ed.): Treatise on Invertebrate Paleontology, Part F, Coelenterata, 90–106, figs. 75–85, LawrenceGoogle Scholar
  10. Bromley, R. G. (1975): Comparative analysis of fossil and recent echinid bioerosion.—Palaeontology,18, 725–739, pls. 85–89, 2 figs., LondonGoogle Scholar
  11. Brotzen, F. (1959): On Tylocidaris species (Echinoidea) and the stratigraphy of the Danian of Sweden.—Sveriges geol. Unders., Ser. C,571, 1–81, 19 figs., 1 tab., StockholmGoogle Scholar
  12. Buchardt, B. (1978): Oxygen isotope palaeotemperatures from the Tertiary period in the North Sea area.—Nature,275, 121–123, 2 figs., LondonCrossRefGoogle Scholar
  13. Cairns, S. D. (1979): The deep-water scleractinia of the Caribbean Sea and adjacent waters.—Stud. Fauna Curacao,57, 1–341, 21 pls., 5 tabs., 60 maps, UtrechtGoogle Scholar
  14. — (1983): Antarctic and subantarctic Stylasterina (Coelenterata: Hydrozoa).—Antarctic Research Series,38/2, 61–164, 50 figs., 1 tab., 15 maps, WashingtonGoogle Scholar
  15. Cairns, S. D. &Stanley G. D. (1982): Ahermatypic coral banks: living and fossil counterparts.—Proc. 4th. Int. Coral Reef Symp. Manila,1, 611–618, 2 figs., 1 tab., Quezon CityGoogle Scholar
  16. Chafetz, H. S. (1986): Marine peloids: a product of bacterially induced precipitation of calcite.—J. Sed. Petrol.,56/6, 812–817, 3 figs., TulsaGoogle Scholar
  17. Coates, A. G. &Kaufmann, E. G. (1973): Stratigraphy, paleontology and paleoenvironment of a Cretaceous coral thicket, Lamy, New Mexico.—J. Paleont.,47/5, 953–968, 1 pl., 4 figs., TulsaGoogle Scholar
  18. Coates, A. G. &Jackson, J. B. C. (1987): Clonal growth, algal symbiosis and reef formation by corals.—Paleobiology,13/4, 363–378, 10 figs., 3 tabs., ChicagoGoogle Scholar
  19. Crame, J. A. (1980): Succession and diversity in the Pleistocene coral reefs of the Kenia coast.—Palaeontology,23/1, 1–37, 17 figs., 2 tabs., LondonGoogle Scholar
  20. Le Danois, E. (1948): Les profondeurs de la mer.—303 pp., 64 figs., ParisGoogle Scholar
  21. Dons, C. (1944): Norges korallrev.—Kong. Norske Videnskab. Selsk. Forhandl.,16 (1943), 37–82, 15 figs., 9 tabs., TrondheimGoogle Scholar
  22. Dullo, W. Chr., Süssmeier, G. &Tietz, G. F. (1987): Diversity and distributional patterns of reef building scleractinians in recent lagoonal patch reefs on the coast of Kenya.—Facies,16, 1–10, 1 pl., 5 figs., 2 tabs., ErlangenGoogle Scholar
  23. Eliuk, L.S. (1989): Mesozoic reefs and other organic accumulations in Canada and adjacent areas.—In:Geldsetzer, H.H.J., James, N.P. & Tebbutt, G.E. (Eds.): Reefs. Canada and Adjacent Areas. Canadian Soc. Petrol. Geol., Mem.,13, 695–705, 4 figs., 3 tabs., CalgaryGoogle Scholar
  24. Fagerstrom, J.A. (1987): The evolution of reef communities.— 600 p., 51 pls., New York, (Wiley)Google Scholar
  25. Fischer-Benzon, R. (1866): Über das relative Alter des Faxekalkes und die in demselben vorkommenden Anomuren und Bruchyuren. —30 pp., 5 pls., Kiel (Schwer'sche Buchhandlung)Google Scholar
  26. Floris, S. (1962): Om havdybden ved Faxe i Danien.—Medd. Dansk geol. Foren.,15, 150–151, CopenhagenGoogle Scholar
  27. Floris, S. (1971): Fakse kalkbrud.—In:Hansen, M. & Poulsen, V. (ed.): Varv Ekskursionsförer2, 37–54, figs. 29–53, CopenhagenGoogle Scholar
  28. — (1972): Scleractinian corals from the Upper Cretaceous and Lower Tertiary of Nugssuaq, West Greenland.—Medd. Grönland,196/1, 1–132, 8 pls., 16 figs., 1 tab., CopenhagenGoogle Scholar
  29. Floris, S. (1979a): Maastrichtian and Danian corals from Denmark.—In:Birkelund, T. & Bromley, R.G. (ed.): Cretaceous-Tertiary boundary events Symp. 1. The Maastrichtian and Danian of Denmark, 92–94, CopenhagenGoogle Scholar
  30. Floris, S. (1979b): Guide to Fakse limestone quarry.—In:Birkelund T. & Bromley, R.G. (ed.): Cretaceous-Tertiary boundary events Symp. 1. The Maastrichtian and Danian of Denmark, 152–163, 11 figs., CopenhagenGoogle Scholar
  31. — (1980): The coral banks of the Danian of Denmark.—Acta Palaeontologica Polonica,25/3–4, 531–540, 6 figs., 2 tabs., WarszawaGoogle Scholar
  32. Flügel, E. (1982): Microfacies analysis of limestones.—633 pp., 53 pls., 78 figs., 58 tabs., Berlin (Springer)Google Scholar
  33. Fricke, H.W. &Hottinger, L. (1983): Coral bioherms below the euphotic zone in the Red Sea.—Mar. Ecol. Prog. Ser.,11, 113–117, 5 figs.Google Scholar
  34. Geister, J. (1984): Die paläobathymetrische Verwertbarkeit der scleractinen Korallen.—In:Luterbacher H.P. (ed.): Paläontologische Kursbücher,2 (Paläobathymetrie), 46–95, 16 figs., MünchenGoogle Scholar
  35. Grasshoff, M. &Zibrowius, H. (1983): Kalkkrusten auf Achsen von Hornkorallen, rezent und fossil.—Senckenbergiana marit.,15, 4/6, 111–145, 8 pls., FrankfurtGoogle Scholar
  36. Gruvel, M. (1923): Quelques gisements de coraux sur la cote occidentale du Maroc.—Comptes Rendues Académie Sciences,176, 1637, ParisGoogle Scholar
  37. Hadding, A. (1941): The pre-quaterny sedimentary rocks of Sweden. 6. Reef limestones.—Lunds Universitetet Aarskrift, N.F. Avd. 2,37/10, 1–133, 88 figs., LundGoogle Scholar
  38. Hansen, J.M. (1977): Dinoflagellate stratigraphy and echinoid distribution in Upper Maastrichtian and Danian deposits from Denmark.—Bull. geol. Soc. Denmark,26, 1–26, fig. 6, CopenhagenGoogle Scholar
  39. Hennig, A. (1898): Faunan i Skaanes yngre krita. 1. Echiniderna.—Bihang till K. Svenska Vet.—Akad. Handlingar., Afd. 4,24/2, 1–11, 1 pl., StochholmGoogle Scholar
  40. — (1899a): Faunan i Skaanes yngre krita. 3. Korallerna.—Bihang till K. Svenska Vet..—Akad. Handlingar., Afd. 4,24/8, 1–25, 2 pls., StockholmGoogle Scholar
  41. — (1899b): Studier över den baltiska yngre kritans bildningshistoria.— Geol. Fören. Forhandl.,190/21, 1, 19–82, 25 pls., StockholmGoogle Scholar
  42. — (1899c): Faunan i Skaanes yngre krita. 2. Lamellibranchiaterna. —Bihang till K. Svenska Vet.—Akad. Handlingar., Afd. 4,24/7, 1–35, 2 pls., StockholmGoogle Scholar
  43. Hichson, S.J. (1906): Coelenterata and Ctenophora.—The Cambridge Natural History,1, 243–287, figs. 124–136, CambridgeGoogle Scholar
  44. Holland, B. Gabrielson, J. (1979): Guide to Limhamn quarry.—In:Birkelund, T. & Bromley R.G. (1979); Cretaceous-Tertiary boundary events Symp. 1. The Maasrichtian and Danian of Denmark.—142–151, 4 figs. CopenhagenGoogle Scholar
  45. Laschet, C. (1984): On the origin of cherts.—Facies,10, 257–290, 19 figs., 2 tabs., ErlangenGoogle Scholar
  46. Lowenstam, H.A. &Epstein, S. (1954): Paleotemperatures of the Postaptian Cretaceous as determined by oxygen isotope method. —J. Geol.,62, 207–248, 22 figs., ChicagoCrossRefGoogle Scholar
  47. Lyell, C. (1835): On Cretaceous and Tertiary strata of the Danish islands of Seeland and Mön.—Geol. Soc. London Transact., Ser. 2,5, 243–257, 10 figs., LondonGoogle Scholar
  48. Madsen, V. (1928): Übersicht über die Geologie von Dänemark. —225 pp., 16 figs., CopenhagenGoogle Scholar
  49. Milthers, V. (1907): En ny lokalitet for Faxekalk paa Sjaeland.— Medd. Dansk geol. Foren.,13, 115–117, CopenhagenGoogle Scholar
  50. Moore, D.R. &Bullis H.R. (1960): A deep-water coral reef in the Gulf of Mexico.—Bull. Marine Sci.,10, 125–128, MiamiGoogle Scholar
  51. Mullins, H.T., Newton, C.R., Heath, K. &Vanburen, H.M. (1981): Modern deep-water coral mounds north of Little Bahama Bank: Criteria for recognition of deep-water coral bioherms in the rock record.—J. Sed. Petrol.,51/3, 999–1013, 7 figs., 3 tabs., TulsaGoogle Scholar
  52. Neumann, A.C. &Ball, M.M. (1970): Submersible observations in the Straits of Florida.—Bull. Geol. Soc. Am.,81, 2861–2874, 9 figs., 1 tab., New YorkGoogle Scholar
  53. Neumann, A.C., Kofoed, J.W. &Keller, G.H. (1977): Lithoherms in the Straits of Florida.—Geology,5, 4–10, BoulderCrossRefGoogle Scholar
  54. Nielsen, K.B. (1912): Cirripedierne i Danmarks Danianaflejringer. —Medd. Dansk geol. Foren.,4, 19–41, 2 pls., 1 fig., CopenhagenGoogle Scholar
  55. — (1917):Heliopora incrustans nov. spec.—Medd. Dansk. geol. Foren.,5/8, 1–13, 17 Figs., CopenhagenGoogle Scholar
  56. — (1913): Crinoiderne i Danmarks kridtaflejringer.—Danmarks geol. Unders., Raekke 2,26, 1–120, 12 pls., 34 figs., 1 tab., CopenhagenGoogle Scholar
  57. — (1919): En Hydrocoralfauna fra Faxe.—Medd. Dansk geol. Foren.,5/16, 1–65, 2 pls., 9 figs., CopenhagenGoogle Scholar
  58. Nielsen, K.B. (1922): Zoantharia from Senone and Paleocene deposits in Denmark and Skaane.—Kgl. Danske Videnskab. Selsk. Skr., Raekke 8,5/3, 4 pls., CopenhagenGoogle Scholar
  59. Ödum, H. (1926): Studier over Daniet i Jylland og paa Fyn.—Danmarks geol. Unders., Raekke 2,54, 1–306, 7 pls., 29 figs., CopenhagenGoogle Scholar
  60. Plumely, W.J., Risely, G.A., Graves, R.W. &Kaley, M.E. (1962): Energy index for limestone interpratation and classification.—Mem. Amer. Ass. Petrol. Geol.,1, 85–107, 4 pls., 5 figs., TulsaGoogle Scholar
  61. Rasmussen, H.W. (1973): En Lyssky hulefaunafra Fakse som vidnesbyrd om koralkalkens dannelse i lyszonen.—Dansk. geol. Foren., Aarskrift for 1972, 87–91, 2 pls., CopenhagenGoogle Scholar
  62. Rasmussen, H.W. & Sieverts-Doreck (1978): Articulata.—In: (Moore, R.C. (ed.): Treatise on Invertebrate Paleontology, Part T Echinodermata2/3, 813–928, figs. 549–616, LawrenceGoogle Scholar
  63. Ravn, J.P.J. (1902): Molluskerne i Danmarks kridtaflejringer. 1. Lamellibranchiater.—Kgl. Danske Vidensk. Selsk. Skr., Raekke 6, Naturv. Math. Afd.11/2, 1–70, 4 pls., 1 map CopenhagenGoogle Scholar
  64. — (1927): De irregulaere echinider i Danmarks kridtaflejringer.—Kgl. Danske Vidensk. Selsk. Skr., Raekke 8, Naturv. Math. Afd.11/4, 1–62, 5 pls., 5 figs., CopenhagenGoogle Scholar
  65. — (1928): De regulaere echinider i Danmarks kridtaflejringer.—Kgl. Danske Vidensk. Selsk. Skr., Raekke 9, Naturv. Math. Afd.1/1, 1–62, 6 pls., 12 figs., CopenhagenGoogle Scholar
  66. — (1933): Études sur les pélécypodes et gastropodes daniens du calcaire de Faxe.—Kgl. Danske Vidensk. Selsk. Skr., Raekke 9, Naturv. Math. Afd.5/2, 1–71, 7 pls., 2 figs., CopenhagenGoogle Scholar
  67. Reed, J.K. (1980): Distribution and structure of deep-water coral Oculina varicosa coral reefs off central eastern Florida.—Bull. Marine Sci.,30/3, 667–677, 6 figs., 1 tab., WashingtonGoogle Scholar
  68. — (1981): In situ growth rates of the scleractinian Oculina vericosa occuring with zooxanthellae on 6-m reefs and without on 80-m banks.—Proc. 4th. Int. Coral Reef Symp. Manila,2, 201–206, 2 figs, 1 tab., Quezon CityGoogle Scholar
  69. Rosen, B.R. (1977): The depth distribution of recent hermatypic corals and its palaeontological significance.—Memoires Bureau Recherches Geologiques Minières,89, 507–517, 3 figs., 1 tab., ParisGoogle Scholar
  70. Rosenkrantz, A. (1937): Bemaerkninger om det östsjaellandske Daniens Stratigraphi og Tektonik.—Medd. Dansk. geol. Foren.,9, 199–212, 6 figs., CopenhagenGoogle Scholar
  71. Rosenkrantz, A. & Rasmussen, H. W. (1960): South-eastern Sjaeland and Mön, Denmark.—Guide to exkursions nos A 42 and C 37, part1, Int. Geol. Congr. 21, 17 pp., 11 figs., CopenhagenGoogle Scholar
  72. Schuhmacher, H. &Zibrowius, H. (1985): What is hermatypic? —Coral reefs,4, 1–9, Berlin, Heidelberg (Springer)Google Scholar
  73. Scoffin, T. P., Alexandersson, E. T., Bowes, G. E., Clokie, J. J., Farrow, G. E. &Milliman, J. D. (1980): Recent, temperate, subphotic carbonate sedimentation: Rockall Bank, Northeast Atlantic.—J. Sed. Petrol.,50/2, 331–356, 19 figs., 3 tabs., TulsaGoogle Scholar
  74. Squires, D. F. (1961): Deep sea corals collected by the Lamont Geological Observatory. 2 Scotia Sea corals.—American Museum Novitates,2046, 1–48, 31 figs., 3 tabs., New YorkGoogle Scholar
  75. — (1964): Fossil coral thickets in Wairarapa, Nea Zealand.—J. Paleont.,38/5, 904–915, pls. 147–148, 3 figs., Tulsa.Google Scholar
  76. — (1965): Deep-water coral structure on the Campbell Plateau, New Zealand.—Deep-Sea Research,12, 785–788, 1 fig., LondonGoogle Scholar
  77. Stanley, G.D., Jr. (1981): Early history of scleractinian corals and its geological consequences.—Geology,9, 507–511, BoulderCrossRefGoogle Scholar
  78. Stanley, G. D., Jr. &Cairns, S. D. (1988): Constructional azooxanthellate coral communities: an overview with implicationsGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1990

Authors and Affiliations

  • Michaela Bernecker
    • 1
  • Oliver Weidlich
    • 1
  1. 1.Institut für PaläontologieUniversität ErlangenErlangen

Personalised recommendations