Advertisement

Facies

, Volume 27, Issue 1, pp 245–261 | Cite as

A eustatically driven calciturbidite sequence from the Dinantian II of the Eastern Rheinisches Schiefergebirge

  • Hans-Georg Herbig
  • Peter Bender
Article

Summary

The Gladenbach Formation is an approximately 30 m thick, well-segregated calciturbidite sequence, restricted to the Hörre belt of the eastern Rheinisches Schiefergebirge. It is middle Tournaisian in age (lowerPericyclus Stage, lower cd II of the German Culm zonation) and is an equivalent of the Liegende Alaunschiefer. The sequence is composed predominantly of minor turbiditic fining-upward cycles.

Cycles start with massive calciturbidite beds. They are composed of fine-grained intraclastic-bioclastic grainstone/packstone, more or less ooid-bearing in the top of the formation, and/or radiolarian-rich packstone. Cycles continue with platy, dense limestones consisting of radiolarian-rich wackestone/packstone and microlithoclastic-microbioclastic wackestone/packstone. Different types of shales finish the fining-upward development. Minor cycles can be grouped into several 4th order cycles, composing a single 3rd order cycle. Towards the top, abundance of resedimented platform components, like ooids, calcareous smaller foraminifers, echinoderms, brachiopods, bryozoans and critical conodont genera, increases. Simultaneously, the thickness of the minor cycles decreases. This indicates a transgressive phase, characterized by increasing over-production of carbonate on platform realms and a correlated increase in the frequency of resedimentation events in the basin. The transgression corresponds to the well-documented global eustatic transgression of the Lowercrenulata andisosticha-uppercrenulata Zone of the conodont chronology. Thus, the Gladenbach Formation is interpreted as a transgressive systems tract/highstand systems tract. The Liegende Alaunschiefer is the time-equivalent, starved basin facies.

Predominating hemipelagic calciturbidites of the lower Gladenbach Formation derive from the deeper shelf slope or from an intrabasinal swell, which might constitute a flexural bulge in front of the shelf slope. Turbidite sediments from the upper part of the formation derive from shelf-edge sands and the upper shelf slope. The source might be related to the ancient Devonian reef complex of Langenaubach-Breitscheid in the southwest.

Keywords

Stratigraphy Cyclicity Eustasy Limestone Turbidites Microfacies Rheinisches Schiefergebirge (Rhenish Slate Mountains) (Germany) Carboniferous (Tournaisian, Dinantian II, Gladenbach Formation, Hörre Belt) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, T. (1984): Dynamic stratigraphy of epicontinental carbonates, Upper Muschelkalk (M. Triassic), South-German Basin. —N. Jb. Geol. Paläont. Abh.,169/2, 127–159, 14 Figs., StuttgartGoogle Scholar
  2. Arbeitsgemeinschaft für Dinantium-Stratigraphie (1971): Unterkarbon (Dinantium).—Fortschr. Geol. Rheinld. u. Westfalen,19, 5–18, 3 Figs. KrefeldGoogle Scholar
  3. Armstrong, A. K. & Mamet, B.L. (1977): Carboniferous microfacies, microfossils, and corals, Lisburne Group, Arctic Alaska.—U. S. Geol. Surv. Prof. Paper.,849, 144 p., 19 Figs., 47 Pls., WashingtonGoogle Scholar
  4. Belka, Z. (1985): Lower Carboniferous conodont biostratigraphy in the northeastern part of the Moravia-Silesia Basin.—Acta Geol. Polon.,35/1–2, 33–60, 5 Figs. 22 Pls., WarszawaGoogle Scholar
  5. Bender, H. (1960): Der SW-Teil der Hörre-Acker-Zone.—Unpubl. Diss., Univ. Marburg, 97 pp., 42 Figs., 1 Tab., 1 Pl., MarburgGoogle Scholar
  6. Bender, P. (1978): Die Entwicklung der Hörre-Zone im Devon und Unterkarbon.—Z. deutsch. geol. Ges.,129, 131–140, 5 Figs., HannoverGoogle Scholar
  7. — (1989): Die Hörre und ihre Stellung im östlichen Rheinischen Schiefergebirge.—Jber. u. Mitt. oberrhein. geol. Ver., N.F.,71, 347–356, 4 Figs., StuttgartGoogle Scholar
  8. Bender, P. &Brinckmann, J. (1969): Oberdevon und Unterkarbon südwestlich Marburg/Lahn (Lahn-Mulde und Hörre-Zone, Rheinisches Schiefergebirge).—Geologica et Palaeontologica,3, 1–20, 5 Figs. 4 Tab., MarburgGoogle Scholar
  9. Bender, P. & Herbig, H.-G. (1992): Conodonten und Foraminiferen aus der unterenPericyclus-Stufe des östlichen Rheinischen Schiefergebirges (Gladenbach-Formation, Hörre-Zone). Geologica et Palaeontologica, Marburg (im Druck)Google Scholar
  10. Bender, P. &Homrighausen (1979): Die Hörre-Zone, eine Neudefinition auf lithostratigraphischer Grundlage.—Geologica et Palaeontologica,13, 257–260, 1 Figs., 1 Tab., MarburgGoogle Scholar
  11. Bender, P., Franke, W., Hinze, L., Hahn, G., Hahn, R., Horn, M., Krebs, W., Kulick, J., Meischner, D., Paproth, E., Rosenfeld U. & Stoppel, D. (1971): Devon-Karbon-Grenze, Kulm-Fazies des Dinantiums, Verzahnung Kulm-Kohlenkalk und flözleeres Namur im Harz, am Ost- und Nordrand des Rheinischen Schiefergebirges.—7. Intern. Kongr. Stratigr. Geol. Karbon, Exk. III, 36+6 pp., 36 Figs., KrefeldGoogle Scholar
  12. Bischoff, G. (1957): Die Conodontenstratigraphie des rhenoherzynischen Unterkarbons mit Berücksichtigung der Wocklumeria-Stufe und der Devon/Karbon-Grenze.—Abh. hess. L.-Amt Bodenforsch.,19, 64 pp., 2 Tab., 6 Pls., WiesbadenGoogle Scholar
  13. Bischoff, G. &Ziegler, W. (1956): Das Alter der “Urfer Schichten im Marburger Hinterland nach Conodonten.—Notizbl. hess. L.— Amt Bodenforsch.,84, 138–169, 1 Tab., Pl. 11–14, Wiesbaden.Google Scholar
  14. Bless, M.J.M. (1983): Late Devonian and Carboniferous ostracode assemblages and their relationship to the depositional environment. —Bull. Soc. belge Géol.,92/1, 31–53, 23 Figs., BrusselGoogle Scholar
  15. Braun, A. (1990): Radiolarien aus dem Unter-Karbon Deutschlands. —Cour. Forsch.-Inst. Senckenberg,133, 177 pp., 66 Figs., 17 Pls., Frankfurt a. M.Google Scholar
  16. Braun, A. &Gursky, H.-J. (1991): Kieselige Sedimentgesteine des Unter-Karbons im Rhenohercynikum—eine Bestandsaufnahme. —Geologica et Palaeontologica,25, 57–77, 2 Figs., 2 Tab., Marburg.Google Scholar
  17. Buchholz, P., Wachendorf, H. &Zellmer, H. (1991): Die Flinzfazies im Harz—eine Charakteristik mitteldevonisch-unterkarbonischer Hungerbecken-Sedimente.—Geol. Hb. Hessen,119, 5–44, 17 Figs., 2 Pls., WiesbadenGoogle Scholar
  18. Buggisch, W., Rabien, A., Hühner, G. (1986): Stratigraphie und Fazies von Oberdevon/Unterkarbon-Profilen im Steinbruch “Beuerbach” bei Oberscheld.—Geol. Jb. Hessen,114, 5–60, 12 Figs., 11 Tab., 1 Pl., WiesbadenGoogle Scholar
  19. Clausen, C.-D., Leuteritz, K. &Ziegler, W., mit einem Beitrag vonKorn, D. (1989): Ausgewählte Profile an der Devon/Karbon-Grenze im Sauerland (Rheinisches Schiefergebirge).— Fortschr. Geol. Rheinld. u. Westfalen,35, 161–226, 27 Figs., 12 Tab., 1 Pl., KrefeldGoogle Scholar
  20. Conil, R. &Lys, M. (1977): Les transgressions dinantiennes et leurs influence sur la dispersion et lévolution des foraminifères.—Mém. Inst. géol. Univ. Louvain,29, 9–56, 6 Taf., LouvainGoogle Scholar
  21. Conil, R. &Paproth, E. (1983): Foraminifers from the uppermost Devonian and the Dinantian of the Rhenish massif (Federal Republic of Germany).—Paläont. Z.,57/1–2, 27–38, 4 Figs., 1 Tab., StuttgartGoogle Scholar
  22. Cook, H.E. & Mullins, H.T. (1983): Basin margin environment—In:Scholle, P.A., Bebout, D.G. & Moore, C.H. (eds.): Carbonate Depositional Environments, Amer. Assoc. Petrol. Geol., Mem.33, 538–617, 136 Figs., 1 Tab., TulsaGoogle Scholar
  23. Correns, C.W. (1934): Blatt Buchenau.—Erl. geol. Kt. Preußen usw., Lfg.272, 46 pp., BerlinGoogle Scholar
  24. Correns, C.W., Kegel, W. & Schmierer, T. (1933): Blatt Gladenbach, Nr. 3044.—Geol. Kt. Preußen usw., Lfg.317Google Scholar
  25. Droxler, A.W. &Schlager, W. (1985): Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas.—Geology,13, 799–802, 3 Figs., BoulderCrossRefGoogle Scholar
  26. Dzulynski, S. &Walton, E.K. (1965): Sedimentary features of flysch and greywackes.—Develop. Sedimentol.7, 274 pp., 167 Figs., 5 Tab., Amsterdam (Elsevier)Google Scholar
  27. Eberli, G.P. (1991): Calcareous turbidites and their relationship to sea-level fluctuations and tectonism.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy, 340–359, 12 Figs., Berlin, etc. (Springer).Google Scholar
  28. Eder, W. (1970): Genese Riff-naher Detritus-Kalke bei Balve im Rheinischen Schiefergebirge (Garbecker Kalk).—Verh. geol. B.-A.,1970, 551–569, 6 Figs., WienGoogle Scholar
  29. — (1982): Diagenetic redistribution of carbonate, a process in forming limestone-marl alternations (Devonian and Carboniferous, Rheinisches Schiefergebirge, W. Germany).—In:Einsele, G. &Seilacher, A. (eds.): Cyclic and Event Stratification, 98–112, 12 Figs., Berlin (Springer)Google Scholar
  30. Eder, F.W., Engel, W., Franke, W. &Sadler, P.M.(1983): Devonian and Carboniferous limestone-turbidites of the Rheinische Schiefergebirge and their tectonic significance.—In:Martin, H. &Eder, F.W. (eds.): Intracontinental Fold Belts, 93–124, 13 Figs., 2 Pls., Berlin, (Springer).Google Scholar
  31. Einsele, G. (1991): Submarine mass flow deposits and turbidites.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy, 313–339, 10 Figs., Berlin, (Springer).Google Scholar
  32. Einsele, G. &Kelts, K. (1982): Pliocene and Quaternary mud turbidites in the Gulf of California: Sedimentology, mass physical properties and significance.—Init. Rep. Deep Sea Drilling Proj.,64, 511–528, 10 Figs., 2 Pls., Washington.Google Scholar
  33. Engel, W., Franke, W., Grote, C., Weber, K., Ahrendt, H. &Eder, F.W. (1983): Nappe tectonics in the southeastern part of the Rheinisches Schiefergebirge.—In:Martin, H. &Eder, F.W. (eds.): Intracontinental Fold Belts, 267–287, 6 Figs., Berlin (Springer)Google Scholar
  34. Entenmann, W. (1990): Untersuchungen zur Geologie und Ingenieurgeologie an der Aartalsperre bei Bischoffen, Lahn-Dill-Kreis (Hessen). Teil 1: Allgemeine Geologie, Tektonik.—Geol. Jb. Hessen,118, 235–263, 13 Figs., Wiesbaden.Google Scholar
  35. — (1991): Feinstratigraphie und Sedimentologie der Elnhausen-Schichten (Unterkarbon) der Hörre-Zone.—Geologica et Palaeontologica,25, 79–85, 7 Figs., Marburg.Google Scholar
  36. Fahraeus, L.E., Slatt, R.M. &Nowlan, G.S. (1974): Origin of carbonate pseudopellets.—J. Sediment. Petrol.,44/1, 27–29, 2 Figs., TulsaGoogle Scholar
  37. Franke, W. &Walliser, O.H.(1983): “Pelagic” carbonates in the Variscan Belt—their sedimentary and tectonic environments.—In:Martin, H. &Eder, F.W. (eds.): Intracontinental Fold Belts, 77–92, 1 Figs., Berlin, (Springer)Google Scholar
  38. Franke, W., Eder, W. &Engel, W. (1975): Sedimentology of a Lower Carboniferous shelf-margin (Velbert Anticline, Rheinisches Schiefergebirge, W-Germany).—N. Jb. Geol. Paläont. Abh.,150/3, 314–353, 16 Figs., 1 Tab., StuttgartGoogle Scholar
  39. Franke, W., Bortfeld, R.K., Brix, M., Drozdzewski, G., Dürbaum, H.J., Giese, P., Janoth, W., Jödicke, H., Reichert, C., Scherp, A., Schmoll, J., Thomas, R., Thünker, M., Weber, K., Wiesner, M.G. &Wong, H.K. (1990): Crustal structure of the Rhenish Massif: results of deep seismic reflection lines DEKOPR 2-North and 2-North-Q.—Geol. Rundsch.,79/3, 523–566, 21 Figs., StuttgartCrossRefGoogle Scholar
  40. Goodwin, P.W. &Anderson, E.J. (1985): Punctuated aggradational cycles: a general hypothesis of episodic stratigraphic accumulation.—J. Geol.,93/5, 515–533, 12 Figs., ChicagoCrossRefGoogle Scholar
  41. Groessens, E., unter Mitwirkung vonConil, R. &Streel, M. (1982): Session extraordinaire de la Société belge de Géologie et de la Société géologique de Belgique tenue à Biedenkopf, en République Fédérale d’allemagne, du 17 au 21 octobre 1980, sous la direction du Dr. Dieter Stoppel. Compte Rendu.—Bull. Soc. belge Géol.,91/1, 9–17, 8 Figs., BrusselsGoogle Scholar
  42. Gursky, H.-J. (1988): Gefüge, Zusammensetzung und Genese der Radiolarite im ophiolithischen Nicoya-Komplex (Costa Rica). —Münster. Forsch. Geol. Paläont.,68, 189 pp., 63 Figs., 4 Tab., MünsterGoogle Scholar
  43. Gutschick, R.C. & Sandberg, Ch.A. (1983): Mississippian continental margins of the conterminous United States.—In:Stanley, D.J. & Moore, G.T. (eds.): The Shelfbreak: Critical Interface of Continental Margins, Soc. Econ. Paleont. Mineral., Spec. Publ.,33, 79–96, 7 Figs., TulsaGoogle Scholar
  44. Haq, B.U., Hardenbol, J. &Vail, P.R. (1987): Chronology of fluctuating sea levels since the Triassic.—Science,235, 1156–1167, 5 Figs., WashingtonCrossRefGoogle Scholar
  45. Herbig, H.-G. (1985): An Upper Devonian limestone slide block near Marbella (Betic Cordillera, Southern Spain) and the palaeogeographic relations between Malaguides and Menorca.—Acta Geol. Hispanica,20/2, 155–178, 6 Figs., 1 Tab., 4 Pls., Barcelona.Google Scholar
  46. Homrighausen, R. (1979): Petrographische Untersuchungen an sandigen Gesteinen der Hörre-Zone (Rheinisches Schiefergebirge, Oberdevon-Unterkarbon).—Geol. Abh. Hessen,79, 84 pp., 16 Figs., 5 Tab., 13 Pls., WiesbadenGoogle Scholar
  47. Jackson, P.C. (1991): The Dinantian stratigraphy of north-west Devon.—Proc. Yorkshire Geol. Soc.,48/4, 447–460, 9 Figs., YorkGoogle Scholar
  48. James, N.P. (1984): Shallowing-upward sequences in carbonates.—In:Walker, R.G. (ed.): Facies Models (2nd ed.), Geoscience Canada, Reprint Ser.,1, 213–228, 19 Figs., St. John’sGoogle Scholar
  49. Kalvoda, J. (1989): Tournaisian events in Moravia (Czechoslovakia) and their significance.—Cour. Forsch.-Inst. Senckenberg,117, 353–358, 3 Figs., Frankfurt a. M.Google Scholar
  50. Kayser, E. (1899): Berichte über die Exkursionen.—Ber. oberrhein. geol. Ver., 32. Vers. Marburg i. H. am 6. April 1899, 7–11, Stuttgart.Google Scholar
  51. Kayser, E. (1907a): Blatt Oberscheld.—Erl. geol. Kt. Preußen usw., Lfg. 101, 128 pp., 15 Figs., 7 Pls., Berlin.Google Scholar
  52. Kayser, E. (1907b): Blatt Ballersbach.—Erl. geol. Kt. Preußen usw., Lfg. 101, 71 pp., 12 Figs., 27 Pls., BerlinGoogle Scholar
  53. Kayser, E. (1915): Blatt Marburg.—Erl. geol. Kt. Preußen usw., Lfg. 212, 49 pp., 2 Pls., BerlinGoogle Scholar
  54. Kayser, E. &Holzapfel, E. (1894): Über die stratigraphischen Beziehungen der böhmischen Stufen F, G, H Barrande’s zum rheinischen Devon.—Jb. Kgl. Preuss. Geol. L.-Anst.,14 (1893), 236–284, 4 Figs., 2 Tab., BerlinGoogle Scholar
  55. Kegel, W. (1933): Blatt Gladenbach.—Erl. geol. Kt. Preußen usw., Lfg. 317, 28 pp., BerlinGoogle Scholar
  56. Kockel, C.W. (1958): Schiefergebirge und Hessische Sencke um Marburg/Lahn.—Samml. geol. Führer,37, 248 pp., 28 Figs., 2 Pls., Berlin (Gebr. Borntraeger)Google Scholar
  57. Krebs, W. (1966): Der Bau des oberdevonischen Langenaubach-Breitscheider Riffes und seine weitere Entwicklung im Unterkarbon (Rheinisches Schiefergebirge).—Abh. senckenb. naturf. Ges.,511, 1–105, 18 Figs., 3 Tabs., 13 Pls., Frankfurt a. M.Google Scholar
  58. — (1968): Zur Frage der bretonischen Faltung im östlichen Rhenohercynikum.—Geotekt. Forsch., 28, 1–71, 9 Figs., Stuttgart.Google Scholar
  59. Lane, R. & Ziegler, W. (1978): Conodont biostratigraphy of the Riescheid exposure.—In: Field Trip 1978, I.U.G.S. Working Group on the Devonian-Carboniferous Boundary, 4 pp. (unpubl.).Google Scholar
  60. Lash, G.G. (1988): Sedimentology and evolution of the Martinsburg Formation (Upper Ordovician) fine-grained turbidite depositional system, central Appalachians.—Sedimentol.,35, 429–447, 16 Figs., Oxford.CrossRefGoogle Scholar
  61. Logan, B.W. & Semeniuk, V. (1976): Dynamic metamorphism; processes and products in Devonian carbonate rocks, Canning Basin, Western Australia.—Geol. Soc. Australia, Spec. Publ.,6, 138 pp., 97 Figs., 11 Tab., SydneyGoogle Scholar
  62. Mamet, B. (1976): An atlas of microfacies in Carboniferous carbonates of the Canadian Cordillera.—Geol. Surv. Canada, Bull.,255, 131 pp., 3 Figs., 95 Pls., OttawaGoogle Scholar
  63. Masetti, D., Neri, C. &Bosellini, A. (1991): Deep-water asymmetric cycles and progradation of carbonate platforms governed by high-frequency eustatic oscillations (Triassic of the Dolomites, Italy).—Geology,19, 336–339, 4 Figs., BoulderCrossRefGoogle Scholar
  64. Matthews, R.K. (1984): Dynamic Stratigraphy (2nd ed.).—489 pp., Englewood Cliffs (Prentice Hall)Google Scholar
  65. Meischner, K.-D. (1964): Allodapische Kalke, Turbidite in riffnahen Sedimentationsbecken.—In:Bouma, A.H. &Brouwer, A. (eds.): Turbidites, Developm. Sedimentol.,3, 156–191, 5 Figs., 3 Pls., Amsterdam, (Elsevier)Google Scholar
  66. Montanari, A., Chan, L.S. & Alvarez, W. (1989): Synsedimentary tectonics in the Late Cretaceous—Early Tertiary pelagic basin of the northern Apennines, Italy.—In:Crevello, P.D., Wilson, J.L., Sarg, J.F. & Read, J.F. (eds.): Controls on Carbonate Platform and Basin Development. Soc. Econ. Paleont. Mineral. Spec. Publ.,44, 379–399, 19 Figs., Tulsa.Google Scholar
  67. Mullins, H.T. (1983): Modern carbonate slopes and basins of the Bahamas.—In:Cook, H.E., Hine, A.C. & Mullins, H.T. (eds.): Platform Margin and Deep Water Carbonates, Soc. Econ. Paleont. Mineral., Short Course, No12, pp. 4-1–4-138, Figs. 4-1–4-75, TulsaGoogle Scholar
  68. Mullins, H.T. &Cook, H.E. (1986): Carbonate apron models: alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration.—Sediment. Geol.,48, 37–79, 30 Figs., Amsterdam.CrossRefGoogle Scholar
  69. Mullins, H.T., Johnson, J.G. &Shanmugam, G. &Moiola, R.J. (1983): Comments and reply on “Eustatic control of turbidites and winnowed turbidites.—Geology,11, 57–60, 2 Figs., 1 Tab., BoulderCrossRefGoogle Scholar
  70. Paproth, E., Conil, R., Bless, M.J.M., Boonen, P., Bouckaert, J., Carpentier, N., Coen, M., Delcambre, B., Deprijck, Ch., Deuzon, S., Dreesen, R., Groessens, E., Hance, L., Hennebert, M., Hibo, D., Hahn, G. &Hahn, R., Hislaire, O., Kasig, W., Laloux, M., Lauwers, A., Lees, A., Lys, M., Op De Beek, K., Overlau, P., Pirlet, H., Poty, E., Ramsbottom, W., Streel, M., Swennen, R., Thorez, J., Vanguestaine, M., Van Steenwinkel, M. &Vieslet, J.L. (1983): Bio- and lithostratigraphic subdivisions of the Dinantian in Belgium, a review.—Ann. Soc. géol. Belg.,106, 185–239, 1 Fig., 5 Tabs., 1 Append., BrusselsGoogle Scholar
  71. Pickering, K., Stow, D., Watson, M. &Hiscott, R. (1986): Deepwater facies, processes and models: a review and classification scheme for modern and ancient sediments.—Earth Sci. Rev.,23, 75–174, 52 Figs., 2 Tab., AmsterdamCrossRefGoogle Scholar
  72. Piper, D.J.W. (1978): Turbidites muds and silts on deep-sea fans and abyssal plains.—In:Stanley, D.J. &Kelling, G. (eds.): Sedimentation in Submarine Canyons, Fans and Trenches, 163–176, Stroudsburg (Dowden, Hutchinson & Ross).Google Scholar
  73. Piper, D.J.W. &Stow, D.A.V. (1991): Fine-grained turbidites.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy, 360–376, 7 Figs., Berlin (Springer).Google Scholar
  74. Ramsbottom, W.H.C. (1973): Transgression and regression in the Dinantian: a new synthesis of British stratigraphy.—Proc. Yorkshire Geol. Soc., 39, 567–607, 8 Figs., 1 Tab., YorkCrossRefGoogle Scholar
  75. — (1978): Carboniferous.—In:McKerrow, W.S. (ed.): The Ecology of Fossils, 146–183, Figs. h-i, Figs. 39–56, Tab. 5–7, London (G. Duckworth & Co.)Google Scholar
  76. Reijmer, J.J.G., Ten Kate, G.H.Z., Sprenger, A. &Schlager, W. (1991): Calciturbidite composition related to exposure and flooding of a carbonate platform (Triassic, Eastern Alps).—Sedimentol.,38, 1059–1074, 9 Figs., 5 Tabs., OxfordCrossRefGoogle Scholar
  77. Ross, C.A. &Ross, J.R.P. (1985): Late Paleozoic depositional sequences are synchronous and worldwide.—Geology,13, 194–197, 3 Figs., BoulderCrossRefGoogle Scholar
  78. — & — (1987): Late Paleozoic sea levels and depositional sequences. —Cushman Found. Foram. Research, Spec. Publ.,24, 137–149, 4 Figs., WashingtonGoogle Scholar
  79. Sandberg, Ch. A. &Gutschick, R.C. (1984): Distribution, microfauna, and source-rock potential of Mississippian Delle Phosphatic Member of Woodman Formation and equivalents, Utah and adjacent States.—In:Woodward, J., Meissner, F.F. &Clayton, J.L. (eds.): Hydrocarbon Source Rocks of the Greater Rocky Mountain Region, 135–178, 17 Figs., 4 Tab., 8 Pls., Denver (Rocky Mountain Assoc. Geologists)Google Scholar
  80. Sando, W.J., Bamber, E.W. & Richards, B.C. (1990): The rugose coral Ankhelasma—Index to Viséan (Lower Carboniferous) shelf margin in the Western Interior of North America.—U.S. Geol. Surv. Bull.,1895, (B), 29 pp., 13 Figs., 1 Tab., WashingtonGoogle Scholar
  81. Sarg, J.F. (1988): Carbonate sequence stratigraphy.—In:Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A. & Van Wagoner, J.C. (eds.): Sea-Level Changes—An Integrated Approach. Soc. Econ. Paleont. Mineral. Spec. Publ.,42, 155–181, 23 Figs., 1 tab., Tulsa.Google Scholar
  82. Schlager, W. & Chermak, A. (1979): Sediment facies of platformbasin transition, Tongue of the Ocean, Bahamas.—In:Doyle, L.J. & Pilkey, O.H. (eds.): Geology of Continental Slopes, Soc. Econ. Paleont. Mineral. Spec. Publ.,27, 193–208, 17 Figs., 1 Tab., TulsaGoogle Scholar
  83. Scholle, P.A. (1971): Sedimentology of fine-grained deep-water carbonate turbidites, Monte Antola Flysch (Upper Cretaceous), northern Apennines, Italy.—Geol. Soc. America, Bull.,82, 629–658, 19 Figs., BoulderGoogle Scholar
  84. Stow, D.A.V. &Piper, D.J.W. (1984): Deep-water fine-grained sediments: facies models.—In:Stow, D.A.V. &Piper, D.J.W. (eds.): Fine-grained Sediments: Deep-water Processes and Facies. Geol. Soc. Spec. Publ.,15, 611–646, 19 Figs., Oxford (Blackwell).Google Scholar
  85. Stow, D.A.V., Wezel, F.C., Savelli, D., Rainey, S.C.R. &Angell, G. (1984): Depositional model for calcilutites: Scaglia Rossa limestones, Umbro-Marchean Apennines.—In:Stow, D.A.V. &Piper, D.J.W. (eds.): Fine-grained Sediments: Deep-water Processes and Facies. Geol. Soc. Spec. Publ.,15, 223–241, 11 Figs., Oxford, etc., (Blackwell).Google Scholar
  86. Tucker, M.E. (1990): Carbonate depositional systems II: deeper-water facies of pelagic and resedimented limestones.—In:Tucker, M.E. &Wright, V.P. (eds.): Carbonate Sedimentology, 228–283, 58 Figs., 3 Tab., Oxford (Blackwell).Google Scholar
  87. Vail, P.R., Mitchum, R.M., Jr., Todd, R.G., Widmier, J.M., Thompson III, S., Sangree, J.B., Bubb, J.N. & Hatlelid, W.G. (1977): Seismic stratigraphy and global changes of sea level.—In:Payton, C.E. (ed.): Seismic Stratigraphy—Application to Hydrocarbon Exploration, American Assoc. Petrol. Geol., Mem.,26, 49–212, TulsaGoogle Scholar
  88. Wilson, J.L. (1975): Carbonate facies in geologic history.—471 pp., 183 Figs., 30 Pls., Berlin, (Springer)Google Scholar
  89. Ziegler, W. (1957): Neue Kartierungsergebnisse aus dem Paläozoikum des Marburger Hinterlandes.—Z. dt. geol. Ges.,109, 664–665, HannoverGoogle Scholar
  90. Ziegler, W. (1971): A Field Trip Guidebook. Post-Symposium Excursion, Sept. 15–18, 1971, to Rhenish Slate Mountains and Hartz Mountains.—47 pp., 26 Figs., Symp. Conodont Taxonomy, Marburg/Lahn 1971, MarburgGoogle Scholar
  91. Zimmerle, W., Gaida, K.-H., Gedenk, R., Koch, R. & Paproth, E. (1980): Sedimentological, mineralogical, and organic-geochemical analyses of Upper Devonian and Lower Carboniferous strata of Riescheid, Federal Republic of Germany.—In:Bless, M.J.M., Bouckaert, J. & Paproth, E. (eds.): Pre-Permian around the Brabant massif in Belgium, the Netherlands and Germany, Meded. Rijks Geol. Dienst,32–5, 34–43, 2 Figs., 2 Tab., 6 Pls., HeerlenGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1992

Authors and Affiliations

  • Hans-Georg Herbig
    • 1
  • Peter Bender
    • 1
  1. 1.Institut für Geologie und PaläontologiePhilipps-Universität MarburgMarburg

Personalised recommendations