Facies of sunken early cretaceous atoll reefs and their capping Late Albian drowning succession (Northwestern Pacific)

Summary

Since first described in detail byHamilton (1956), the causes and timing of the drowning of several hundred guyots in the northwestern Pacific is a puzzling question. Thus, the northwestern Pacific is one of the key areas in deciphering the demise of flat-topped platforms throughout the earth’s history. Based on older paleontological data and the newly found shallow-water benthic foraminifera, the atoll reefs probably had a major period of vertical aggradation during the Barremian and the Aptian into the Late Albian depending on the stage of atoll development (type of guyot). New sedimentologic and stratigraphic data suggest a strong fall in sea level, leading to karstification and the formation of lowstand fringing reefs, prior to an even rapid rise of greater amplitude in the Late AlbianRotalipora appenninica zone ultimately causing drowning. After climatic relaxation, a sea level rise led to the final formation of small barrier reefs, rimming the top of many guyots in the Japanese Group, the Wake Group and the Mid-Pacific Mountains. They can be interpreted as “give-up” structures indicating a final shallow-water carbonate production on top of the atolls during drowning.

The facies of the syn- and post-drowning sediments on the guyot tops are strikingly similar even when vast distances apart. This and the biostratigraphic data suggest a synchronous drowning of many seamounts investigated up to now.

Biotic composition and facies of the final Albian reefs are very similar to Albian caprinid-dominated reefs in the Caribbean region, indicating comparable environmental controls.

In the case of the northwestern Pacific guyots, the simultaneous demise of reefs could be due to a short-term cooling event in the Late Albian, connected with a strong regressive-transgressive cycle with an amplitude of about 180 m. This event is also known from the Tethys and the Atlantic. Climatic disturbances triggering short-term cooling and inducing a high amplitude regressive-transgressive sea level cycle, might be responsible not only for the Late Albian event, but also perhaps for other reef drownings throughout the earth’s history.

This is a preview of subscription content, log in to check access.

References

  1. Aguayo-C., J.E. (1978): Sedimentary environments and diagenesis of a Creteceous reef complex, eastern Mexico.—Anales Centro Ciencia Marino Limnologica Univ. Nac. Autonomia México,5, 83–140, Mexico

    Google Scholar 

  2. Austin, J.A., Schlager, W., et al. (1986): Proc. ODP Init. Repts. (Pt. A.),101, 111–212, 34 Figs., College Station

    Google Scholar 

  3. Austin, J.A., Schlager, W. et al. (1988): Proc. ODP Sci. Results,101, College Station

  4. Baturin, G.N. (1971): Stages of phosphorite formation on the ocean floor.—Nature,232, 61–62, London

    Article  Google Scholar 

  5. Bebout, D. & Ratcliff, D. (1985, eds.): Lower Cretaceous depositional environments from shoreline to slope. A core workshop. —Gulf Coast Section Soc. Econ. Paleont. Min., 145 pp., Austin

  6. Bentor, Y.K. (1980): Phosphorites—the unsolved problems.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 2–18, Tulsa

  7. Berger, W.H., & Winterer, E.L. (1974): Plate stratigraphy and fluctuating carbonate line.—In:Hsü, K.J. & Jenkyns, H.C. (eds.): Pelagic Sediments on Land and under the Sea.—Internat. Assoc. Sedimentol. Spec. Publ.,1, 11–48, 26 Figs., Oxford

  8. Böhm, F. (1992): Paläogeographie und Mikrofazies des Lias und Dogger der Nordöstlichen Kalkalpen.—Ph.D. Thesis Inst. Paläont. Univ. Erlangen-Nürnberg

  9. Bréhéret, J-G. (1988): Episodes de sédimentation riche en matière organique dans les marnes bleues d’âge aptien et albien de la partie pélagique du bassin vocontien.—Bull. Soc. Géol. France,8, IV(2), 349–356, Paris

    Google Scholar 

  10. Bromley, R.G. (1975): Trace fossils and omission surfaces.—In:Frey, R.W. (ed.): The Study of Trace Fossils.—399–428, New York, (Springer)

    Google Scholar 

  11. Brotzen, F. (1959): OnTylocidaris species (Echinoidea) and the stratigraphy of the Danian of Sweden with a bibliography of the Danian and Paleocene.—Sveriges Geol. Undersöking Ser. C,54/2, 1–81, 19 Figs., 3 Pls., Stockholm

    Google Scholar 

  12. Burnett, W.C., Veeh, H.H. & Soutar, A. (1980): U-series, oceanographic and sedimentary evidences in support of Recent formation of phosphate nodules off Peru.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 61–71, 6 Figs., Tulsa

  13. Campbell (1992): Unconformities in seismic records and outcrops. —Ph. D. Thesis Vrije Universiteit Amsterdam, 187 pp., Amsterdam

  14. Cullen, D.J. (1980): Distribution, composition and age of submarine phosphorites on Chatham Rise, East of New Zealand.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 139–179, 9 Figs., Tulsa

  15. Deville, Q., & Strohmenoer, C. (1990): Paleokarst features in the Chambotte Formation (Lower Valanginian) of the Salere Mountain (SE-France).—13th Internat. Sedimentol. Congr. Abstr., 63, Nottingham

  16. Dunham, R.J. (1969): Early vadose silt in Townsend mound (reef), New Mexico.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,14, 139–182, Tulsa

    Google Scholar 

  17. Enos, P. (1974): Reefs, platforms and basins of Middle Creteceous in northeast Mexico.—Bull. Amer. Ass. Petrol. Geol.,58, 800–809, Tulsa

    Google Scholar 

  18. — (1985): Cretaceous debris reservoirs, Poza Rica field, Vercruz, Mexico.—In:Roehl, P.O. &Choquette, P.W. (eds.): Carbonate Petroleum Reservoirs, 457–469, 11 Figs., New York, (Springer)

    Google Scholar 

  19. — (1986): Diagenesis of mid-Cretaceous rudist reefs, Valles Platform, Mexico.—In:Schroeder, J.H. &Purser, B.H., (eds.): Reef diagenesis, 160–185, Berlin (Springer)

    Google Scholar 

  20. Erlich, R.N., Barrett, S.F. &Guo Bai Ju (1990): Seismic and geologic characteristics of drowning events on carbonate platforms.—Amer. Assoc. Petrol. Geol. Bull.,74, 1523–1537, 25 Figs., 1 Tab., Tulsa

    Google Scholar 

  21. Fagerstrom, J.A. (1989): The evolution of reef communities.—600 pp., New York (Wiley)

    Google Scholar 

  22. Flügel, E. (1982): Microfacies Analysis of Limestones.—633 pp., 53 Pls., 78 Figs., Berlin (Springer)

    Google Scholar 

  23. Föllmi, K. (1989): Mid-Cretaceous platform drowning, current-induced condensation and phosphogenesis, and pelagic sedimentation along the Eastern Helvetic Shelf (Northern Tethys Margin).—In:Wiedmann, J. (ed.): Cretaceous of the Western Tethys.—583–606, 7 Figs. Stuttgart (Schweizerbart)

    Google Scholar 

  24. Fürsich, F.T. (1979): Genesis, environment and ecology of Jurassic hardgrounds.—N. Jb. Geol. Paläontol. Abh.,158(1), 1–63, Stuttgart

    Google Scholar 

  25. Garrison, R.E. & Fischer, A.G. (1969): Deep-water limestones and radiolarites of the Alpine Jurassic.—In:Friedman, G.M. (ed.): Depositional Environments in Carbonate Rocks.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,14, 20–55, Tulsa

  26. Gaudette, H.F. & Lyons, B.W. (1980): Phosphate geochemistry in nearshore carbonate sediments: a suggestion of apatite formation.—In:Bentor, Y.K. (ed.): Marine Phosphorites-Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 215–225, 1 Fig., 10 Tab., Tulsa

  27. Grötsch, J. (1991): Die Evolution von Karbonatplattformen des offenen Ozeans in der mittleren Kreide (NW-Jugoslavia, NW-Pacific, NW-Griechenland): Möglichkeiten zur Rekonstruktion von Meeresspiegelveränderungen verschiedener Größenordnung. —Ph.D. Thesis Inst. Paläont. Univ. Erlangen-Nürnberg, 229 pp., 41 Fig., 2 Tab., 29 Pls., Erlangen

  28. Grötsch, J. (in press): Guilds, cycles and episodic, vertical aggradation of a reef (Upper Barremian to Lower Aptian, Dinaric carbonate platform, NW. Yugoslavia).—In:Boer, P. de & Smith, D.G. (eds.): Orbital Forcing.—Internat. Assoc. Sedimentol. Spec. Publ., Oxford.

  29. Grötsch, J., Schroeder R., Noé, S. & Flügel, E. (submitt.): Surviving and drowning of carbonate platforms in the Tethys, the Atlantic and the NW-Pacific: a possible link to an Upper Albian cooling event.—Basin Research

  30. Hamilton, E.L. (1956): Sunken Islands of the Mid-Pacific Mountains —Geol. Soc. Am. Mem., 64, 91 pp., 9 Pls., 8 Figs., 5 Tab., Boulder

  31. Haq, B.U. Hardenbol, J. & Vail, P.R. (1988): Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change.— In:C.K. Wilgus, C.K., B.S., Hastings, B.S., Kendall, C.S., Posamentier, H.W., Ross, C.A. & Van Wagoner, J.C. (eds.): Sea-Level Changes: An Integrated Approach.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,42, 71–108, 17 Figs., Tulsa

  32. Harland, W.B., Cox, A.V., Llewelyn, P.G., Pickton, C.A., Smith, D.G., &Walters, R. (1982): A Geologic Time Scale.—131 pp., Cambridge (Cambridge University Press)

    Google Scholar 

  33. Heezen, B.C., Matthews, J.L., Catalano, R., Natland, J., Coogan, A., Tharp, M. &Rawson, M. (1973): Western Pacific Guyots. —Init. Repts. Deep Sea Drilling Project,20, 653–723, 42 Figs., 10 Pls., Washington

    Article  Google Scholar 

  34. Hesse, R. (1973): Diagenesis of a seamount oolite from the West Pacific, Leg 20, DSDP.—Init. Repts. Deep Sea Drilling Project,20, 363–387, 4 Figs., 9 Pls., Washington

    Google Scholar 

  35. Hine, A.C. &Steinmetz, J.C. (1984): Cay Sal Bank Bahamas—a rapidly submerged and partially drowned carbonate platform. —Marine Geol.,59, 135–164, Amsterdam

    Article  Google Scholar 

  36. Hollmann, R. (1962): Über Subsolution und die Knollenkalke des Calcare Ammonitico Rosso Superiore in Monte Baldo (Malm, Norditalien).—N. Jb. Geol. Paläontol. Mh.,1962, 163–179, 8 Figs., Stuttgart

    Google Scholar 

  37. Jarvis, I. (1980): The initiation of phosphatic chalk sedimentation —the Senonian (Cretaceous) of the Anglo-Paris Basin.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 167–192, 18 Figs., Tulsa

  38. Jenkyns, H. (1971): The genesis of condensed sequences in the Tethyan Jurassic.—Lethaia4, 327–352, Oslo

    Google Scholar 

  39. — (1972): Pelagic “oolites” from the Tethyan Jurassic.—J. Geol.,80, 21–33, Chicago

    Article  Google Scholar 

  40. Johnson, C.C. (1984): Paleoecology, carbonate petrology and depositional environments of lagoonal facies, Cupido and El Abra Formation, northeastern Mexico.—M.S. Thesis Univer. Colorado, Boulder

  41. Johnson, C.C., Collins, L.S. &Kauffman, E.G. (1988): Rudistid biofacies across the El Abra Formation (Late Albian (?). Early-Middle Cenomanian, Northeastern Mexico.—Transact. 11th Caribbean Geol. Conference Barbados,1, 1–2, 11 Figs., Barbados

    Google Scholar 

  42. Jordan, C.F., Connally, T.C., &Vest, H.A. (1985): Middle Cretaceous carbonates of the Mishrif Formation, Fateh Field, offshore Dubai, U.A.E.—In:Roehl, P.O., &Choquette, P.W. (eds.): Carbonate Petroleum Reservoirs.—427–442, 8 Figs., New York (Springer)

    Google Scholar 

  43. Kauffman, E.G. (1984): The fabric of Cretaceous marine extinctions. —In:Berggren, W.A. &Van Couvering, J. (eds.): Catastrophes and earth history: The new uniformitarianism. 151–246, Princeton (Princeton Univ. Press)

    Google Scholar 

  44. Kauffman, E.G., &Johnson, C.C. (1988): The morphological and ecological evolution of Middle and Upper Cretaceous reef-building rudistids.—Palaios,3, 194–216, 11 Figs., Ann Arbor

    Google Scholar 

  45. Kennedy, W.J. &Garrison, R.E. (1975): Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England.—Sedimentology,22, 311–386, Oxford

    Article  Google Scholar 

  46. Konishi, K. (1984): Cretaceous reefal fossils dredged from two seamounts of the Ogasawava Plateau.—In:Kobayashi, K. (ed.), Preliminary Report of the Hakuho Maru Cruise KH84-1, 169–179, Tokyo

  47. — (1989): Limestone of the Daiichi Kashima Seamount and the fate of a subducting guyot: fact and speculation from the Kaiko “Nautile” dives.—Tectonophysics,160, 249–265, Amsterdam

    Article  Google Scholar 

  48. Ladd, H.S., Newman, W.A., &Sohl, N.F. (1974): Darwin Guyot, the Pacific’s oldest atoll.—Proced. Second Intern. Coral Reef Symp.,2, 513–522, 11 Figs., Brisbane

    Google Scholar 

  49. Leckie, D., Fox, C. &Tarnocai, C. (1989): Multiple paleosols of the late Albian Boulder Creek Formation, British Columbia, Canada.—Sedimentology,36, 307–323, 9 Figs., 5 Tab., Oxford

    Article  Google Scholar 

  50. Leckie, D., Singh, C., Goodarzi, F., &Wall, J.H. (1990): Organicrich radioactive marine shale: a case study of a shallow-water condensed section, Cretaceous Shaftesburg Formation, Alberta Canada.—J. Sed. Petrol.,60, 101–117, 16 Figs., 3 Tab., Tulsa

    Google Scholar 

  51. Manheim, F.T. Pratt, R. M. & McFarlin, P.F. (1980): Composition and origin of phosphorite deposits of the Blake Plateau.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 117–137, 13 Figs., Tulsa

  52. Masse, J.-P. & Philip, J. (1981): Cretaceous coral-rudistid buildups of France.—In:Toomey, D.F. (ed.): European Fossil Reef Models. Soc. Econ. Paleont. Min. Spec. Publ., 30, 399–426, 26 Figs., Tulsa

  53. Matthews, J.L., Heezen, B.Z., Catalano, R., Coogan, A., Tharp, M., Natland, J. &Rauzon, M. (1974): Cretaceous drowning of reefs on Mid-Pacific and Japanese Guyots.—Science,184, 462–464, Washington

    Article  Google Scholar 

  54. McNutt, M.K. & Fischer, K.M. (1987): The South Pacific Superswell.—In:Keating; B.H., Fryer, P., Batiza, R. & Boehlen, G.W. (eds.), Seamounts, Islands and Atolls.— Geophys. Monogr. Amer. Geophys. Union, 43, 25–34, Washington

  55. McNutt, M.K. &Judge, A.V. (1990): The superswell and mantle dynamics beneath the South Pacific.—Science,248, 969–975, 9 Figs., Washington

    Article  Google Scholar 

  56. McNutt, M.K., Winterer, E.L., Sager, W.W., Natland, J.H. &Ito, G. (1990): The Darwin Rise: a Cretaceous superswell?— Geophys. Res. Lett.17, 1101–1104, Washington

    Google Scholar 

  57. Menard, H.W. (1964): Marine Geology of the Pacific—274 pp., New York, (McGraw-Hill)

    Google Scholar 

  58. — (1984): Darwin Reprise.—J. Geophys. Res.89, 9960–9968, Washington

    Google Scholar 

  59. Meyer, F.O. (1989): Siliciclastic influence on Mesozoic platform development: Baltimore Canyon Trough, Western Atlantic.— In:Crevello, P.D., Wilson, J.L., Sarg, J.F. & Read, J.F.: Controls on Carbonate Platform and Basin Development.— Soc. Econ. Paleontol. Mineral. Spec. Publ.,44, 213–232, 14 Figs., Tulsa

  60. Monty, C. (1973): Les nodules de manganése sont des stromatolithes océaniques.—C. r. Acad. Sci. Paris, D,276, 3285–3288, Paris

    Google Scholar 

  61. Nakanishi, M., Tamaki, K. &Kobayashi, K. (1989): Mesozoic magnetic anomaly lineations and seafloor spreading history of the Northwestern Pacific.—J. Geophys. Res.,89, 15437–15462, Washington

    Google Scholar 

  62. Perkins, B.F. (1974): Paleoecology of a rudist reef complex in the Comanche Creteceous Glen Rose Limestone of central Texas. —Geoscience and Man,8, 131–174

    Google Scholar 

  63. Perkins, B.F. (1985): Caprinid reefs and related facies in the Comanche Cretaceous Glen Rose Limestone of Central Texas.—In:Bebout, D. & Ratcliff, D. (eds.): Lower Cretaceous depositional environments from shoreline to slope. A core workshop. Gulf Coast Sect. Soc. Econ. Paleont. Min., 129–140, 3 Figs., Austin

  64. Pomoni-Papaioannu, F. &Solaktus, N. (1991): Phosphatic hardgrounds and stromatolites from the limestone/shale boundary section at Prossilion (Maastrichtian-Paleocene) in the Parnassus-Ghiona Zone, Central Greece.—Paleogeogr. Paleoclimatol. Paleoecol.86, 243–254, 2 Figs., 5 Pls., Amsterdam

    Article  Google Scholar 

  65. Premoli-Silva, I. &Brasa, C. (1978): Shallow water skeletal debris and large foraminifers from DSDP Site 462, Nauru Basin, Western Equatorial Pacific.—Init. Repts. Deep Sea Drilling Project,61, 439–453, Washington

    Google Scholar 

  66. Reitner, J. (1987): Mikrofazielle, palökologische und paläogeographische Analyse ausgewählter Vorkommen flachmariner Karbonate im Baskokantabrischen Strike Slip Fault Becken-System (Nordspanien) and der Wende von Unterkreide zur Oberkreide.—Documenta naturae,40, 239 pp., 50 Pls., 120 Figs., München

  67. Sager, W.W. &Pringle, M.S. (1987): Mid-Cretaceous to Early Tertiary apparent polar wander path of the Pacific plate.—J. Geophys. Res.,93, 353–369, Washington

    Google Scholar 

  68. Sayre, W.O. (1981): Preliminary report on the paleomagnetism of Aptian and Albian limestones and trachytes from the Mid-Pacific Mountains and Hess Rise, Deep Sean Drilling Project Leg 62.—Init. Rept. Deep Sea Drilling Project,62, 983–994, Washington

    Google Scholar 

  69. Schlager, W. (1974): Preservation of cephalopod skeletons and carbonate dissolution on ancient Tethyan sea floor.—Internat. Assoc. Sedimentol. Spec. Publ.,1, 49–70, 10 Figs., Oxford

    Google Scholar 

  70. — (1981): The paradox of drowned reefs and carbonate platforms. —Geol. Soc. Amer. Bull.,92, 197–211, Boulder

    Article  Google Scholar 

  71. Schlager, W. (1989): Drowning unconformities on carbonate platforms.— In:Crevello, P.D., Wilson, J.L., Sarg, J.F. & Read, J.F.: Controls on Carbonate Platform and Basin Development.— Soc. Econ. Paleontol. Mineral. Spec. Publ.,44, 15–25, 14 Figs., Tulsa

  72. Schlager, W. &Philip, J. (1990): Cretaceous carbonate platforms. —In:Beoudoin, B. &Ginsburg, R.N. (eds.) Cretaceous Resources, Events and Rhythms.—173–195, 14 Figs., Dordrecht (Kluwer Academic Publ.)

    Google Scholar 

  73. Schröder, R. (1975): General evolutionary trends in Orbitolinas (1).—Rev. Espan. Micropaleontol. Nurn. Esp., 117–128, Madrid

  74. Schröder, R. &Neumann, M. (eds. 1985): Les Grands Foraminifères du Crétacé moyen de la région méditerranéenne.—Géobios Mém. spec.,7, 1–160, Lyon

    Google Scholar 

  75. Scott, R.W. (1984): Evolution of Early Cretaceous reefs in the Gulf of Mexico.—Palaeontographica Americana,54, 406–412, Ithaca

    Google Scholar 

  76. — (1988): Evolution of Late Jurassic and Early Creteceous Reef Biota.—Palaios 3/2, 184–193, 6 Figs., Ann Arbor

    Google Scholar 

  77. Scott, R.W. (1990): Models and stratigraphy of Mid-Cretaceous reef communities, Gulf of Mexico.—Soc. Econ. Paleont. Min., Concepts in Sedimentology and Paleontology,2, 102 pp., 51 Figs., Tulsa

  78. Senowbari-Daryan, B., & Grötsch, J. (in press):Palaxius salataensis: An anomuran coprolite from the mid-Cretaceous of the “MIT” Guyot (NW-Pacific).—Ichnos, New York

  79. Shiba, M. (1979): Geologic History of the Yabe Guyot to the east of the Ogasawara Islands.—J. Geol. Soc. Japan,85 209–224, Tokyo

    Google Scholar 

  80. Sliter, W.V. (1989): Biostratigraphic zonation for Cretaceous planktonic foraminifera examined in thin section.—J. Foraminiferal Res.,19/1, 1–19, Washington

    Article  Google Scholar 

  81. Smart, P.L., Palmer, R.J., Whitaker, F. &Wright, P.V. (1988): Neptunian dykes and fissure fills: an overview and account of some modern examples.—In:James, N.P. &Choquette, P.W. (eds.): Paleokarst—149–163, New York (Springer)

    Google Scholar 

  82. Vogt, P.R. (1989): Volcanogenic upwelling of anoxic, nutrientrich water: A possible factor in carbonate bank/reef demise and benthic faunal extinctions.—Geol. Soc. Am. Bull.,101, 1225–1245, Boulder

    Article  Google Scholar 

  83. Vogt, P.R. &Smoot, N.C. (1984): The Geisha Guyots: Multibeam bathymetrie and morphometric interpretation.—J. Geophys. Res.,89(B13), 11085–11107, 12 Figs., Washington

    Google Scholar 

  84. Weissert, H. & Lini, A. (1991): Ice age interludes during the time of Cretaceous greenhouse climate—In:Müller, D.W., McKenzie, J.A. & Weissert, H. (eds.): Controversies in Modern Geology-Evolution of Geologic Theories in Sedimentology, Earth History and Tectonics.—173–190, 5 Figs., Academic Press

  85. Wendt, J. (1970): Stratigraphische Kondensation in triadischen und jurassischen Cephalopodenkalken der Tethys.—N. Jb. Geol. Paläontol. Mh.,1970, 433–448, Stuttgart

    Google Scholar 

  86. — (1974): Encrusting organisms in deep-sea manganese nodules. —Internat. Assoc. Sedimentol. Spec. Publ., 1, 437–447, 12 Figs., Oxford

    Google Scholar 

  87. Wilson, J.L. (1975): Carbonate facies in geologic history.—471 pp., New York (Springer)

    Google Scholar 

  88. Wind, J. (1954):Tylocidaris Piggene som Ledeforsteninger I vort ovre Senon og Danien.—Medd. fra Dansk Geol. Forening,12, 481–489, 1 Tab., 2 Pls., Kobenhavn

    Google Scholar 

  89. Winterer, E.L. &Metzler, C.V. (1984): Origin and subsidence of guyots in Mid-Pacific Mountains.—J. Geophys. Res.,89(B12), 9969–9979, Washington

    Article  Google Scholar 

  90. Winterer, E.L., McNutt, M., Natland, J. and Sager, W. (1989): Cretaceous Guyots in the Northwest Pacific, Drilling Proposal 203E.—submitted to ODP, 38 pp., College Station

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grötsch, J., Flügel, E. Facies of sunken early cretaceous atoll reefs and their capping Late Albian drowning succession (Northwestern Pacific). Facies 27, 153–174 (1992). https://doi.org/10.1007/BF02536809

Download citation

Keywords

  • Sedimentology
  • Facies
  • Carbonates
  • Reef
  • sunken atolls
  • Guyots
  • Pacific
  • Cretaceous (Aptian, Albian)