Advertisement

Facies

, Volume 27, Issue 1, pp 153–174 | Cite as

Facies of sunken early cretaceous atoll reefs and their capping Late Albian drowning succession (Northwestern Pacific)

  • Jürgen Grötsch
  • Erik Flügel
Article

Summary

Since first described in detail byHamilton (1956), the causes and timing of the drowning of several hundred guyots in the northwestern Pacific is a puzzling question. Thus, the northwestern Pacific is one of the key areas in deciphering the demise of flat-topped platforms throughout the earth’s history. Based on older paleontological data and the newly found shallow-water benthic foraminifera, the atoll reefs probably had a major period of vertical aggradation during the Barremian and the Aptian into the Late Albian depending on the stage of atoll development (type of guyot). New sedimentologic and stratigraphic data suggest a strong fall in sea level, leading to karstification and the formation of lowstand fringing reefs, prior to an even rapid rise of greater amplitude in the Late AlbianRotalipora appenninica zone ultimately causing drowning. After climatic relaxation, a sea level rise led to the final formation of small barrier reefs, rimming the top of many guyots in the Japanese Group, the Wake Group and the Mid-Pacific Mountains. They can be interpreted as “give-up” structures indicating a final shallow-water carbonate production on top of the atolls during drowning.

The facies of the syn- and post-drowning sediments on the guyot tops are strikingly similar even when vast distances apart. This and the biostratigraphic data suggest a synchronous drowning of many seamounts investigated up to now.

Biotic composition and facies of the final Albian reefs are very similar to Albian caprinid-dominated reefs in the Caribbean region, indicating comparable environmental controls.

In the case of the northwestern Pacific guyots, the simultaneous demise of reefs could be due to a short-term cooling event in the Late Albian, connected with a strong regressive-transgressive cycle with an amplitude of about 180 m. This event is also known from the Tethys and the Atlantic. Climatic disturbances triggering short-term cooling and inducing a high amplitude regressive-transgressive sea level cycle, might be responsible not only for the Late Albian event, but also perhaps for other reef drownings throughout the earth’s history.

Keywords

Sedimentology Facies Carbonates Reef sunken atolls Guyots Pacific Cretaceous (Aptian, Albian) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguayo-C., J.E. (1978): Sedimentary environments and diagenesis of a Creteceous reef complex, eastern Mexico.—Anales Centro Ciencia Marino Limnologica Univ. Nac. Autonomia México,5, 83–140, MexicoGoogle Scholar
  2. Austin, J.A., Schlager, W., et al. (1986): Proc. ODP Init. Repts. (Pt. A.),101, 111–212, 34 Figs., College StationGoogle Scholar
  3. Austin, J.A., Schlager, W. et al. (1988): Proc. ODP Sci. Results,101, College StationGoogle Scholar
  4. Baturin, G.N. (1971): Stages of phosphorite formation on the ocean floor.—Nature,232, 61–62, LondonCrossRefGoogle Scholar
  5. Bebout, D. & Ratcliff, D. (1985, eds.): Lower Cretaceous depositional environments from shoreline to slope. A core workshop. —Gulf Coast Section Soc. Econ. Paleont. Min., 145 pp., AustinGoogle Scholar
  6. Bentor, Y.K. (1980): Phosphorites—the unsolved problems.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 2–18, TulsaGoogle Scholar
  7. Berger, W.H., & Winterer, E.L. (1974): Plate stratigraphy and fluctuating carbonate line.—In:Hsü, K.J. & Jenkyns, H.C. (eds.): Pelagic Sediments on Land and under the Sea.—Internat. Assoc. Sedimentol. Spec. Publ.,1, 11–48, 26 Figs., OxfordGoogle Scholar
  8. Böhm, F. (1992): Paläogeographie und Mikrofazies des Lias und Dogger der Nordöstlichen Kalkalpen.—Ph.D. Thesis Inst. Paläont. Univ. Erlangen-NürnbergGoogle Scholar
  9. Bréhéret, J-G. (1988): Episodes de sédimentation riche en matière organique dans les marnes bleues d’âge aptien et albien de la partie pélagique du bassin vocontien.—Bull. Soc. Géol. France,8, IV(2), 349–356, ParisGoogle Scholar
  10. Bromley, R.G. (1975): Trace fossils and omission surfaces.—In:Frey, R.W. (ed.): The Study of Trace Fossils.—399–428, New York, (Springer)Google Scholar
  11. Brotzen, F. (1959): OnTylocidaris species (Echinoidea) and the stratigraphy of the Danian of Sweden with a bibliography of the Danian and Paleocene.—Sveriges Geol. Undersöking Ser. C,54/2, 1–81, 19 Figs., 3 Pls., StockholmGoogle Scholar
  12. Burnett, W.C., Veeh, H.H. & Soutar, A. (1980): U-series, oceanographic and sedimentary evidences in support of Recent formation of phosphate nodules off Peru.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 61–71, 6 Figs., TulsaGoogle Scholar
  13. Campbell (1992): Unconformities in seismic records and outcrops. —Ph. D. Thesis Vrije Universiteit Amsterdam, 187 pp., AmsterdamGoogle Scholar
  14. Cullen, D.J. (1980): Distribution, composition and age of submarine phosphorites on Chatham Rise, East of New Zealand.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 139–179, 9 Figs., TulsaGoogle Scholar
  15. Deville, Q., & Strohmenoer, C. (1990): Paleokarst features in the Chambotte Formation (Lower Valanginian) of the Salere Mountain (SE-France).—13th Internat. Sedimentol. Congr. Abstr., 63, NottinghamGoogle Scholar
  16. Dunham, R.J. (1969): Early vadose silt in Townsend mound (reef), New Mexico.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,14, 139–182, TulsaGoogle Scholar
  17. Enos, P. (1974): Reefs, platforms and basins of Middle Creteceous in northeast Mexico.—Bull. Amer. Ass. Petrol. Geol.,58, 800–809, TulsaGoogle Scholar
  18. — (1985): Cretaceous debris reservoirs, Poza Rica field, Vercruz, Mexico.—In:Roehl, P.O. &Choquette, P.W. (eds.): Carbonate Petroleum Reservoirs, 457–469, 11 Figs., New York, (Springer)Google Scholar
  19. — (1986): Diagenesis of mid-Cretaceous rudist reefs, Valles Platform, Mexico.—In:Schroeder, J.H. &Purser, B.H., (eds.): Reef diagenesis, 160–185, Berlin (Springer)Google Scholar
  20. Erlich, R.N., Barrett, S.F. &Guo Bai Ju (1990): Seismic and geologic characteristics of drowning events on carbonate platforms.—Amer. Assoc. Petrol. Geol. Bull.,74, 1523–1537, 25 Figs., 1 Tab., TulsaGoogle Scholar
  21. Fagerstrom, J.A. (1989): The evolution of reef communities.—600 pp., New York (Wiley)Google Scholar
  22. Flügel, E. (1982): Microfacies Analysis of Limestones.—633 pp., 53 Pls., 78 Figs., Berlin (Springer)Google Scholar
  23. Föllmi, K. (1989): Mid-Cretaceous platform drowning, current-induced condensation and phosphogenesis, and pelagic sedimentation along the Eastern Helvetic Shelf (Northern Tethys Margin).—In:Wiedmann, J. (ed.): Cretaceous of the Western Tethys.—583–606, 7 Figs. Stuttgart (Schweizerbart)Google Scholar
  24. Fürsich, F.T. (1979): Genesis, environment and ecology of Jurassic hardgrounds.—N. Jb. Geol. Paläontol. Abh.,158(1), 1–63, StuttgartGoogle Scholar
  25. Garrison, R.E. & Fischer, A.G. (1969): Deep-water limestones and radiolarites of the Alpine Jurassic.—In:Friedman, G.M. (ed.): Depositional Environments in Carbonate Rocks.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,14, 20–55, TulsaGoogle Scholar
  26. Gaudette, H.F. & Lyons, B.W. (1980): Phosphate geochemistry in nearshore carbonate sediments: a suggestion of apatite formation.—In:Bentor, Y.K. (ed.): Marine Phosphorites-Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 215–225, 1 Fig., 10 Tab., TulsaGoogle Scholar
  27. Grötsch, J. (1991): Die Evolution von Karbonatplattformen des offenen Ozeans in der mittleren Kreide (NW-Jugoslavia, NW-Pacific, NW-Griechenland): Möglichkeiten zur Rekonstruktion von Meeresspiegelveränderungen verschiedener Größenordnung. —Ph.D. Thesis Inst. Paläont. Univ. Erlangen-Nürnberg, 229 pp., 41 Fig., 2 Tab., 29 Pls., ErlangenGoogle Scholar
  28. Grötsch, J. (in press): Guilds, cycles and episodic, vertical aggradation of a reef (Upper Barremian to Lower Aptian, Dinaric carbonate platform, NW. Yugoslavia).—In:Boer, P. de & Smith, D.G. (eds.): Orbital Forcing.—Internat. Assoc. Sedimentol. Spec. Publ., Oxford.Google Scholar
  29. Grötsch, J., Schroeder R., Noé, S. & Flügel, E. (submitt.): Surviving and drowning of carbonate platforms in the Tethys, the Atlantic and the NW-Pacific: a possible link to an Upper Albian cooling event.—Basin ResearchGoogle Scholar
  30. Hamilton, E.L. (1956): Sunken Islands of the Mid-Pacific Mountains —Geol. Soc. Am. Mem., 64, 91 pp., 9 Pls., 8 Figs., 5 Tab., BoulderGoogle Scholar
  31. Haq, B.U. Hardenbol, J. & Vail, P.R. (1988): Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change.— In:C.K. Wilgus, C.K., B.S., Hastings, B.S., Kendall, C.S., Posamentier, H.W., Ross, C.A. & Van Wagoner, J.C. (eds.): Sea-Level Changes: An Integrated Approach.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,42, 71–108, 17 Figs., TulsaGoogle Scholar
  32. Harland, W.B., Cox, A.V., Llewelyn, P.G., Pickton, C.A., Smith, D.G., &Walters, R. (1982): A Geologic Time Scale.—131 pp., Cambridge (Cambridge University Press)Google Scholar
  33. Heezen, B.C., Matthews, J.L., Catalano, R., Natland, J., Coogan, A., Tharp, M. &Rawson, M. (1973): Western Pacific Guyots. —Init. Repts. Deep Sea Drilling Project,20, 653–723, 42 Figs., 10 Pls., WashingtonCrossRefGoogle Scholar
  34. Hesse, R. (1973): Diagenesis of a seamount oolite from the West Pacific, Leg 20, DSDP.—Init. Repts. Deep Sea Drilling Project,20, 363–387, 4 Figs., 9 Pls., WashingtonGoogle Scholar
  35. Hine, A.C. &Steinmetz, J.C. (1984): Cay Sal Bank Bahamas—a rapidly submerged and partially drowned carbonate platform. —Marine Geol.,59, 135–164, AmsterdamCrossRefGoogle Scholar
  36. Hollmann, R. (1962): Über Subsolution und die Knollenkalke des Calcare Ammonitico Rosso Superiore in Monte Baldo (Malm, Norditalien).—N. Jb. Geol. Paläontol. Mh.,1962, 163–179, 8 Figs., StuttgartGoogle Scholar
  37. Jarvis, I. (1980): The initiation of phosphatic chalk sedimentation —the Senonian (Cretaceous) of the Anglo-Paris Basin.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 167–192, 18 Figs., TulsaGoogle Scholar
  38. Jenkyns, H. (1971): The genesis of condensed sequences in the Tethyan Jurassic.—Lethaia4, 327–352, OsloGoogle Scholar
  39. — (1972): Pelagic “oolites” from the Tethyan Jurassic.—J. Geol.,80, 21–33, ChicagoCrossRefGoogle Scholar
  40. Johnson, C.C. (1984): Paleoecology, carbonate petrology and depositional environments of lagoonal facies, Cupido and El Abra Formation, northeastern Mexico.—M.S. Thesis Univer. Colorado, BoulderGoogle Scholar
  41. Johnson, C.C., Collins, L.S. &Kauffman, E.G. (1988): Rudistid biofacies across the El Abra Formation (Late Albian (?). Early-Middle Cenomanian, Northeastern Mexico.—Transact. 11th Caribbean Geol. Conference Barbados,1, 1–2, 11 Figs., BarbadosGoogle Scholar
  42. Jordan, C.F., Connally, T.C., &Vest, H.A. (1985): Middle Cretaceous carbonates of the Mishrif Formation, Fateh Field, offshore Dubai, U.A.E.—In:Roehl, P.O., &Choquette, P.W. (eds.): Carbonate Petroleum Reservoirs.—427–442, 8 Figs., New York (Springer)Google Scholar
  43. Kauffman, E.G. (1984): The fabric of Cretaceous marine extinctions. —In:Berggren, W.A. &Van Couvering, J. (eds.): Catastrophes and earth history: The new uniformitarianism. 151–246, Princeton (Princeton Univ. Press)Google Scholar
  44. Kauffman, E.G., &Johnson, C.C. (1988): The morphological and ecological evolution of Middle and Upper Cretaceous reef-building rudistids.—Palaios,3, 194–216, 11 Figs., Ann ArborGoogle Scholar
  45. Kennedy, W.J. &Garrison, R.E. (1975): Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England.—Sedimentology,22, 311–386, OxfordCrossRefGoogle Scholar
  46. Konishi, K. (1984): Cretaceous reefal fossils dredged from two seamounts of the Ogasawava Plateau.—In:Kobayashi, K. (ed.), Preliminary Report of the Hakuho Maru Cruise KH84-1, 169–179, TokyoGoogle Scholar
  47. — (1989): Limestone of the Daiichi Kashima Seamount and the fate of a subducting guyot: fact and speculation from the Kaiko “Nautile” dives.—Tectonophysics,160, 249–265, AmsterdamCrossRefGoogle Scholar
  48. Ladd, H.S., Newman, W.A., &Sohl, N.F. (1974): Darwin Guyot, the Pacific’s oldest atoll.—Proced. Second Intern. Coral Reef Symp.,2, 513–522, 11 Figs., BrisbaneGoogle Scholar
  49. Leckie, D., Fox, C. &Tarnocai, C. (1989): Multiple paleosols of the late Albian Boulder Creek Formation, British Columbia, Canada.—Sedimentology,36, 307–323, 9 Figs., 5 Tab., OxfordCrossRefGoogle Scholar
  50. Leckie, D., Singh, C., Goodarzi, F., &Wall, J.H. (1990): Organicrich radioactive marine shale: a case study of a shallow-water condensed section, Cretaceous Shaftesburg Formation, Alberta Canada.—J. Sed. Petrol.,60, 101–117, 16 Figs., 3 Tab., TulsaGoogle Scholar
  51. Manheim, F.T. Pratt, R. M. & McFarlin, P.F. (1980): Composition and origin of phosphorite deposits of the Blake Plateau.—In:Bentor, Y.K. (ed.): Marine Phosphorites—Geochemistry, Occurrence, Genesis.—Soc. Econ. Paleontol. Mineral. Spec. Publ.,29, 117–137, 13 Figs., TulsaGoogle Scholar
  52. Masse, J.-P. & Philip, J. (1981): Cretaceous coral-rudistid buildups of France.—In:Toomey, D.F. (ed.): European Fossil Reef Models. Soc. Econ. Paleont. Min. Spec. Publ., 30, 399–426, 26 Figs., TulsaGoogle Scholar
  53. Matthews, J.L., Heezen, B.Z., Catalano, R., Coogan, A., Tharp, M., Natland, J. &Rauzon, M. (1974): Cretaceous drowning of reefs on Mid-Pacific and Japanese Guyots.—Science,184, 462–464, WashingtonCrossRefGoogle Scholar
  54. McNutt, M.K. & Fischer, K.M. (1987): The South Pacific Superswell.—In:Keating; B.H., Fryer, P., Batiza, R. & Boehlen, G.W. (eds.), Seamounts, Islands and Atolls.— Geophys. Monogr. Amer. Geophys. Union, 43, 25–34, WashingtonGoogle Scholar
  55. McNutt, M.K. &Judge, A.V. (1990): The superswell and mantle dynamics beneath the South Pacific.—Science,248, 969–975, 9 Figs., WashingtonCrossRefGoogle Scholar
  56. McNutt, M.K., Winterer, E.L., Sager, W.W., Natland, J.H. &Ito, G. (1990): The Darwin Rise: a Cretaceous superswell?— Geophys. Res. Lett.17, 1101–1104, WashingtonGoogle Scholar
  57. Menard, H.W. (1964): Marine Geology of the Pacific—274 pp., New York, (McGraw-Hill)Google Scholar
  58. — (1984): Darwin Reprise.—J. Geophys. Res.89, 9960–9968, WashingtonGoogle Scholar
  59. Meyer, F.O. (1989): Siliciclastic influence on Mesozoic platform development: Baltimore Canyon Trough, Western Atlantic.— In:Crevello, P.D., Wilson, J.L., Sarg, J.F. & Read, J.F.: Controls on Carbonate Platform and Basin Development.— Soc. Econ. Paleontol. Mineral. Spec. Publ.,44, 213–232, 14 Figs., TulsaGoogle Scholar
  60. Monty, C. (1973): Les nodules de manganése sont des stromatolithes océaniques.—C. r. Acad. Sci. Paris, D,276, 3285–3288, ParisGoogle Scholar
  61. Nakanishi, M., Tamaki, K. &Kobayashi, K. (1989): Mesozoic magnetic anomaly lineations and seafloor spreading history of the Northwestern Pacific.—J. Geophys. Res.,89, 15437–15462, WashingtonGoogle Scholar
  62. Perkins, B.F. (1974): Paleoecology of a rudist reef complex in the Comanche Creteceous Glen Rose Limestone of central Texas. —Geoscience and Man,8, 131–174Google Scholar
  63. Perkins, B.F. (1985): Caprinid reefs and related facies in the Comanche Cretaceous Glen Rose Limestone of Central Texas.—In:Bebout, D. & Ratcliff, D. (eds.): Lower Cretaceous depositional environments from shoreline to slope. A core workshop. Gulf Coast Sect. Soc. Econ. Paleont. Min., 129–140, 3 Figs., AustinGoogle Scholar
  64. Pomoni-Papaioannu, F. &Solaktus, N. (1991): Phosphatic hardgrounds and stromatolites from the limestone/shale boundary section at Prossilion (Maastrichtian-Paleocene) in the Parnassus-Ghiona Zone, Central Greece.—Paleogeogr. Paleoclimatol. Paleoecol.86, 243–254, 2 Figs., 5 Pls., AmsterdamCrossRefGoogle Scholar
  65. Premoli-Silva, I. &Brasa, C. (1978): Shallow water skeletal debris and large foraminifers from DSDP Site 462, Nauru Basin, Western Equatorial Pacific.—Init. Repts. Deep Sea Drilling Project,61, 439–453, WashingtonGoogle Scholar
  66. Reitner, J. (1987): Mikrofazielle, palökologische und paläogeographische Analyse ausgewählter Vorkommen flachmariner Karbonate im Baskokantabrischen Strike Slip Fault Becken-System (Nordspanien) and der Wende von Unterkreide zur Oberkreide.—Documenta naturae,40, 239 pp., 50 Pls., 120 Figs., MünchenGoogle Scholar
  67. Sager, W.W. &Pringle, M.S. (1987): Mid-Cretaceous to Early Tertiary apparent polar wander path of the Pacific plate.—J. Geophys. Res.,93, 353–369, WashingtonGoogle Scholar
  68. Sayre, W.O. (1981): Preliminary report on the paleomagnetism of Aptian and Albian limestones and trachytes from the Mid-Pacific Mountains and Hess Rise, Deep Sean Drilling Project Leg 62.—Init. Rept. Deep Sea Drilling Project,62, 983–994, WashingtonGoogle Scholar
  69. Schlager, W. (1974): Preservation of cephalopod skeletons and carbonate dissolution on ancient Tethyan sea floor.—Internat. Assoc. Sedimentol. Spec. Publ.,1, 49–70, 10 Figs., OxfordGoogle Scholar
  70. — (1981): The paradox of drowned reefs and carbonate platforms. —Geol. Soc. Amer. Bull.,92, 197–211, BoulderCrossRefGoogle Scholar
  71. Schlager, W. (1989): Drowning unconformities on carbonate platforms.— In:Crevello, P.D., Wilson, J.L., Sarg, J.F. & Read, J.F.: Controls on Carbonate Platform and Basin Development.— Soc. Econ. Paleontol. Mineral. Spec. Publ.,44, 15–25, 14 Figs., TulsaGoogle Scholar
  72. Schlager, W. &Philip, J. (1990): Cretaceous carbonate platforms. —In:Beoudoin, B. &Ginsburg, R.N. (eds.) Cretaceous Resources, Events and Rhythms.—173–195, 14 Figs., Dordrecht (Kluwer Academic Publ.)Google Scholar
  73. Schröder, R. (1975): General evolutionary trends in Orbitolinas (1).—Rev. Espan. Micropaleontol. Nurn. Esp., 117–128, MadridGoogle Scholar
  74. Schröder, R. &Neumann, M. (eds. 1985): Les Grands Foraminifères du Crétacé moyen de la région méditerranéenne.—Géobios Mém. spec.,7, 1–160, LyonGoogle Scholar
  75. Scott, R.W. (1984): Evolution of Early Cretaceous reefs in the Gulf of Mexico.—Palaeontographica Americana,54, 406–412, IthacaGoogle Scholar
  76. — (1988): Evolution of Late Jurassic and Early Creteceous Reef Biota.—Palaios 3/2, 184–193, 6 Figs., Ann ArborGoogle Scholar
  77. Scott, R.W. (1990): Models and stratigraphy of Mid-Cretaceous reef communities, Gulf of Mexico.—Soc. Econ. Paleont. Min., Concepts in Sedimentology and Paleontology,2, 102 pp., 51 Figs., TulsaGoogle Scholar
  78. Senowbari-Daryan, B., & Grötsch, J. (in press):Palaxius salataensis: An anomuran coprolite from the mid-Cretaceous of the “MIT” Guyot (NW-Pacific).—Ichnos, New YorkGoogle Scholar
  79. Shiba, M. (1979): Geologic History of the Yabe Guyot to the east of the Ogasawara Islands.—J. Geol. Soc. Japan,85 209–224, TokyoGoogle Scholar
  80. Sliter, W.V. (1989): Biostratigraphic zonation for Cretaceous planktonic foraminifera examined in thin section.—J. Foraminiferal Res.,19/1, 1–19, WashingtonCrossRefGoogle Scholar
  81. Smart, P.L., Palmer, R.J., Whitaker, F. &Wright, P.V. (1988): Neptunian dykes and fissure fills: an overview and account of some modern examples.—In:James, N.P. &Choquette, P.W. (eds.): Paleokarst—149–163, New York (Springer)Google Scholar
  82. Vogt, P.R. (1989): Volcanogenic upwelling of anoxic, nutrientrich water: A possible factor in carbonate bank/reef demise and benthic faunal extinctions.—Geol. Soc. Am. Bull.,101, 1225–1245, BoulderCrossRefGoogle Scholar
  83. Vogt, P.R. &Smoot, N.C. (1984): The Geisha Guyots: Multibeam bathymetrie and morphometric interpretation.—J. Geophys. Res.,89(B13), 11085–11107, 12 Figs., WashingtonGoogle Scholar
  84. Weissert, H. & Lini, A. (1991): Ice age interludes during the time of Cretaceous greenhouse climate—In:Müller, D.W., McKenzie, J.A. & Weissert, H. (eds.): Controversies in Modern Geology-Evolution of Geologic Theories in Sedimentology, Earth History and Tectonics.—173–190, 5 Figs., Academic PressGoogle Scholar
  85. Wendt, J. (1970): Stratigraphische Kondensation in triadischen und jurassischen Cephalopodenkalken der Tethys.—N. Jb. Geol. Paläontol. Mh.,1970, 433–448, StuttgartGoogle Scholar
  86. — (1974): Encrusting organisms in deep-sea manganese nodules. —Internat. Assoc. Sedimentol. Spec. Publ., 1, 437–447, 12 Figs., OxfordGoogle Scholar
  87. Wilson, J.L. (1975): Carbonate facies in geologic history.—471 pp., New York (Springer)Google Scholar
  88. Wind, J. (1954):Tylocidaris Piggene som Ledeforsteninger I vort ovre Senon og Danien.—Medd. fra Dansk Geol. Forening,12, 481–489, 1 Tab., 2 Pls., KobenhavnGoogle Scholar
  89. Winterer, E.L. &Metzler, C.V. (1984): Origin and subsidence of guyots in Mid-Pacific Mountains.—J. Geophys. Res.,89(B12), 9969–9979, WashingtonCrossRefGoogle Scholar
  90. Winterer, E.L., McNutt, M., Natland, J. and Sager, W. (1989): Cretaceous Guyots in the Northwest Pacific, Drilling Proposal 203E.—submitted to ODP, 38 pp., College StationGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1992

Authors and Affiliations

  • Jürgen Grötsch
    • 1
  • Erik Flügel
    • 2
  1. 1.Shell Research BVKSEPLRijswijkThe Netherlands
  2. 2.Institut für PaläontologieUniversität Erlangen-NürnbergErlangen

Personalised recommendations