, 16:157 | Cite as

Palecology of upper triassic reefs in the Northern Calcareous Alps: Reef communities

  • Robert J. StantonJr.
  • Erik Flügel


The community is the standard unit of analysis in ecology because through it both physical and biological aspects of the ecosystem can be determined. It offers the same potential in paleoecology. The communities of the upper Triassic reefs are analyzed from the literature and our own field work in order to determine their characteristics and to assess their usefulness.

Six communities are recognized on the basis of R-mode cluster analysis of the do minant frame-builders in Rötelwand reef and from descriptions and our observations in other reefs. TheThecosmilia or High-growing coral, the Hydrozoan-tabulozoan and the Sponge communities are most widespread. The High-growingAstraemorpha, Low-growing coral andSolenopora communities are less common. Each community is characterized by a few dominant taxa and a larger number of associated taxa. The fidelity of the dominant taxa to their community is generally high; the fidelity of many of the associated taxa are typically lower and these taxa occur in a number of communities. Consequently, there is considerable overlap in composition between stands of different communities. In addition, the communities typically occur in patches only a few meters in diameter, and particularly in the Hydrozoan-tabulozoan community, the composition may differ considerably between adjacent patches.

Differences in diversity between the communities are explained in several ways. Parameter of the physical environment can be correlated with diversity. Competition between members of the community probably had a strong effect on community composition and diversity. Different geologic longevity of the communities, which may have led to differences in community evolution and niche structure does not seem to be an important factor.

Succession is poorly documented in these reef communities, either in encrustation sequences or in the development of individual reef patches. Community replacement, well developed only at Rötelwand, is assumed to reflect variations in water depth.

The communities within several reefs are not sharply delimited geographically but have broad and overlapping distributions. The reef patches were widely and apparently randomly scattered in the reef tract, reflecting a generally uniform environment there. The depositional surface was not deeper than perhaps 10 m. The constraints on water depth are that it was shallow enough for the depositional surface to be within the photic zone for the growth of abundant algae, and above wave base for the production and multiple reworking of biogenic debris, but deep enough for a uniform environment with low gradients to be maintained across the reef tract. The reef patches did not have the capability to build up to sea level nor to construct a platform-edge reef dividing sharply reef and fore-reef tracts.

The dominant organisms in the reef patches did not have the ability to construct wave-resistant framework. Consequently, these reefs do not fit the definition of ecologic reefs but do correspond to stratigraphic reefs.

Palökologie der obertriadischen Riffe in den Nördlichen Kalkalpen: Riff-Assoziationen


Paleoecology Reef-communities Northern calcareous alps Upper Triassic 


  1. AUSTIN, A.D., AUSTIN, S.A. & SALE, P.F. (1980): Community structure of the fauna associated with the coralPocillopora damicornis (L.) on the Great Barrier Reef. —Austral. J. Mar. Freshwater Res.31, 163–174CrossRefGoogle Scholar
  2. BAKUS, G.J. (1981): Chemical defense mechanisms on the Great Barrier Reef.—Australia Science211, 487–499Google Scholar
  3. BALL, S.M., POLLARD, W.D. & ROBERTS, J.W. (1977): Importance of phylloid algae in development of depositional topography—reality or myth?—Amer. Ass. Petrol. Geol., Studies in Geology4, 239–259, TulsaGoogle Scholar
  4. BAMBACH, R.K. (1983): Ecospace utilization and guilds in marine communities through the Phanerozoic.—In: TEVESZ, M.J.S. & McCALL, P.L. (eds.): Biotic interactions in Recent and fossil benthic communities, 719–746, New York (Plenum Press)Google Scholar
  5. BERGQUIST, P.R. (1978): Sponges.—268 p., Berkeley (Univ. California Press)Google Scholar
  6. CHAPPELL, J. (1980): Coral morphology, diversity and reef growth.—Nature 286, 249–252, LondonCrossRefGoogle Scholar
  7. CONNELL, J.H. (1973): Population ecology of reef-building corals.—In: JONES, O.A. & ENDEAN, R. (eds): Biology and geology of coral reefs. II.— 205–245, New York (Academic Press)Google Scholar
  8. — (1979): Tropical rain forests and coral reefs as open non-equilibrium systems.—In: ANDERSON, R.M., TURNER, B.D. & TAYLOR, L.R. (eds.): Population Dynamics.—141–163, Oxford (Blackwell)Google Scholar
  9. CONNELL, J.H. & SLAYTER, R.O. (1977): Mechanisms of succession in natural communities and their role in community stability and organization.—Amer. Natur.111, 1119–1144CrossRefGoogle Scholar
  10. CRAME, J.A. (1980): Succession and diversity in the Pleistocene coral reefs of the Kenya coast.—Palaeontology23, 1–37Google Scholar
  11. DARWIN, C.R. (1842): On the structure and distribution of coral reefs.—278 p., LondonGoogle Scholar
  12. DODD, J.R. & STANTON, R.J.Jr. (1981): Paleoecology, Concepts and Applications.—559 p., New York (Wiley)Google Scholar
  13. DULLO, W.-Chr. (1980): Paläontologie, Fazies und Geochemie der Dachsteinkalke (Obertrias) im südwestlichen Gesäuse, Steiermark, Österreich.—Facies,2, 55–122, ErlangenGoogle Scholar
  14. — (1984): Progressive diagenetic sequence of aragonite structures: Pleistocene coral reefs and their modern counterparts on the eastern Red Sea Coast, Saudi Arabia.—Palaeontographica Americana54, 254–260, WashingtonGoogle Scholar
  15. DUNHAM, R.J. (1970): Stratigraphic reefs versus ecologic reefs.—Amer. Ass. Petrol. Geol. Bull.54, 1931–1932, TulsaGoogle Scholar
  16. FAGERSTROM, J.A. (1984): The ecology and paleoecology of the Scleropspongiae and Sphinctozoa (sensu stricto): A review.—Palaeontographica Americana54, 370–381, WashingtonGoogle Scholar
  17. FLÜGEL, E. (1981): Paleoecology and facies of Upper Triassic reefs in the Northern Calcareous Alps.—Soc. Econ. Paleont. Min., Spec. Publ.30, 291–359, TulsaGoogle Scholar
  18. — (1982): Evolution of Triassic reefs: Current concepts and problems.—Facies6, 297–328, ErlangenGoogle Scholar
  19. FLÜGEL, E. & FLÜGEL-KAHLER, E. (1963): Mikrofazielle und geochemische Gliederung eines obertriadischen Riffes der Nördlichen Kalkalpen (Sauwand bei Gußwerk, Steiermark, Österreich).—Mitt. Mus. Bergban Geol. Technik Landesmus. Joanneum24, 129 p., GrazGoogle Scholar
  20. FRANKENBERG, D. & LEIPER, A.S. (1977): Seasonal cycles in benthic communities of the Georgia continental shelf. In: COULL, B.C. (ed.): Ecology of marine benthos.—383–397, Columbia (Univ. South Carolina)Google Scholar
  21. FROST, S.H. (1977): Cenozoic reef systems of Caribbean —Prospects for paleoecologic synthesis.—In: FROST, S.H., WEISS, M.P. & SAUNDERS, J.B. (eds.): Reefs and related carbonates—ecology and sedimentology.— Amer. Ass. Petrol. Geol. Studies in Geology4, 93–110, TulsaGoogle Scholar
  22. GILLER, P.S. (1984): Community structure and niche.— 176 p., London (Chapman and Hall)Google Scholar
  23. GINSBURG, R.N. (1956): Environmental relationships of grain size and constituent particles in some south Florida carbonate sediments.—Amer. Ass. Petrol. Geol. Bull.40, 2384–2427, TulsaGoogle Scholar
  24. GINSBURG, R.N. & LOWENSTAM, H.A. (1958): The influence of marine bottom communities on the depositional environment of sediments.—J. Geol.60, 310–318, ChicagoCrossRefGoogle Scholar
  25. GLYNN, P.W. (1973): Aspects of the ecology of coral reefs in the Western Altantic Region. In: JONES, O.A. & ENDEAN, C.R. (eds.): Biology and Geology of Coral Reefs1, 271–324, New York (Acad. Press)Google Scholar
  26. — (1976): Some physical and biological determinants of coral community structure in the eastern Pacific.— Ecol. Monogr.46, 431–456CrossRefGoogle Scholar
  27. GRAY, J.S. (1977): The stability of benthic ecosystems— Helgoländer wiss. Meeresuntersuchungen30, 427–444, HamburgCrossRefGoogle Scholar
  28. — (1981): The ecology of marine sediments.—185 p., Cambridge (Univ. Press.)Google Scholar
  29. HECKEL, P.H. (1974): Carbonate buildups in the geological record: Soc. Econ. Paleont. Min. Spec. Publ.15, 90154, TulsaGoogle Scholar
  30. JACKSON, J.B.C. (1979): Biological determinants of present and past sessile animal distributions.—In: TEVESZ, M.J.S. & McCALL, P.L. (eds.): Biotic interactions in Recent and fossil benthic communities, 39–120, New York (Plenum Press)Google Scholar
  31. JACKSON, J.B.C. & BUSS, L. (1975): Allelopathy and spatial competition among coral reef invertebrates.— Proc. Nat. Acad. Sci.72, 5160–5163, WashingtonCrossRefGoogle Scholar
  32. KUSS, J. (1983): Faziesentwicklung in proximalen Intraplattform-Becken: Sedimentation, Palökologie und Geochemie der Kössener Schichten (Obertrias, Nördliche Kalkalpen).—Facies9, 61–172, ErlangenGoogle Scholar
  33. LANG, J. (1973): Interspecific aggression by Scleractinian corals. 2. Why the race is not only to the swift. Bull. Marine Sci.23, 260–279Google Scholar
  34. LEWIS, J.B. (1960): The coral reefs and coral communities of Barbados, W.I.—Canadian J. Zool.38, 1133–1145CrossRefGoogle Scholar
  35. LOBITZER, H. (1973): Fazielle Untersuchungen an norischen Karbonatplattform—Beckengesteinen (Dachsteinkalk—Aflenzerkalk im südöstlichen Hochschwabgebiet, Nördliche Kalkalpen, Steiermark).—Mitt Geol. Ges. Wien66/67, 75–91, WienGoogle Scholar
  36. LOWENSTAM, H.A. (1950): Niagaran reefs of the Great Lakes area.—J. Geol.58, 430–487, ChicagoGoogle Scholar
  37. MAXWELL, W.G.H. (1968): Atlas of the Great Barrier Reef.—258 p., Amsterdam (Elsevier)Google Scholar
  38. MILLER, W. (1986): Paleoecology of benthic community replacement.—Lethaia19, 225–231, OsloGoogle Scholar
  39. MILLIMAN, J.D. (1969): Four southwestern Caribbean atolls: Courtown Cays, Albuquerque Cays, Roncador Bank and Serrano Bank.—Atoll Res. Bull.129, 1–41Google Scholar
  40. NICOL, S.A. (1985): Karbonatgeologische und paläontologische Untersuchungen des Aflenzer Kalkes (Nor, Obertrias) im Bereich der Aflenzer Bürgeralm (Obersteiermark, Österreich).—Unveröff. Diplomarbeit Inst. Paläont. Univ. Erlangen-Nürnberg, 123 p., ErlangenGoogle Scholar
  41. — (1987): A down-slope Upper Triassic reef mound: Aflenz Limestone, Hochschwab Mountains, Northern Calcareous Alps.—Facies16, 23–36, ErlangenGoogle Scholar
  42. OHLEN, H.R. (1959): The Steinplatte reef complex of the Alpine Triassic (Rhaetian) of Austria.—Diss. Princeton Univ., 122 p., PrincetonGoogle Scholar
  43. PILLER, W.E. (1981): The Steinplatte reef complex, part of an upper Triassic carbonate platform near Salzburg, Austria.—Soc. Econ. Paleont. Min. Spec. Publ.30, 261–290, TulsaGoogle Scholar
  44. ROOT, D.B. (1967): The niche exploitation pattern of bluegray gnatcatcher.—Ecol. Monograph.,37, 317–350CrossRefGoogle Scholar
  45. RÜTZLER, K. (1970): Spatial competition among porifera: solution by epizoism.—Oecologia5, 85–95CrossRefGoogle Scholar
  46. SADATI, M. (1981): Die Hohe Wand: Ein obertriadisches Lagunen-Riff am Ostende der Nördlichen Kalkalpen (Niederösterreich).—Facies5, 191–264, ErlangenGoogle Scholar
  47. SANDERS, H.L. (1968): Marine benthic diversity: A comparative study.—Amer. Naturalist.102, 243–282CrossRefGoogle Scholar
  48. SARA, M. (1970): Competition and cooperation in sponge populations.—Symp. Zool. Soc. London25, 273–284, LondonGoogle Scholar
  49. SCHÄFER, P. (1979): Fazielle Entwicklung und palökologische Zonierung zweier obertriadischer Riffstrukturen in den Nördlichen Kalkalpen (“Oberrhät”—Riffkalke, Salzburg).—Facies1, 3–45, ErlangenGoogle Scholar
  50. — (1984): Development of ecological coral reefs during the latest Triassic (Rhaetian) of the Northern Limestone Alps.—Palaeontographica Americana54, 1210–218, WashingtonGoogle Scholar
  51. SCHÄFER, P. & SENOWBARI-DARYAN, B. (1978): Neue Korallen (Scleractinia) aus Oberrhät-Riffkalken südlich von Salzburg (Nördliche Kalkalpen, Österreich).— Senckenbergiana leth.59, 117135, FrankfurtGoogle Scholar
  52. SEBENS, K.P. (1976): The ecology of Caribbean sea anemonies in Panama: Utilization of space on a coral reef.—In: MACKIE, G.O. (ed.): Coelenterate ecology and behaviour.—67–77, New York (Plenum Press)Google Scholar
  53. SENOWBARI-DARYAN, B. (1980): Fazielle und paläontologische Untersuchungen in oberrhätischen Riffen (Feichtenstein- und Gruberriff bei Hintersee, Salzburg, Nördliche Kalkalpen).—Facies3, 1–237, ErlangenGoogle Scholar
  54. SIEBER, R. (1937): Neue Untersuchungen über die Stratigraphie und Ökologie der alpinen Triasfaunen. I. Die Fauna der nordalpinen Rhätriffkalke.—N. Jb. Min. Geol. Paläont78, 123–188, StuttgartGoogle Scholar
  55. STAFF, G.M., STANTON, R.J. Jr., POWELL, E.N. & CUMMINGS, H. (1986): Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: Death assemblages in Texas Bays.—Geol. Soc. America Bull.97, 428–443, New YorkCrossRefGoogle Scholar
  56. STANLEY, G.D. (1981): Early history of scleractinian corals and its geological consequences.—Geology9, 507–511, BoulderCrossRefGoogle Scholar
  57. STANTON, R.J. Jr. (1967): Factors controlling shape and internal facies distribution of organic carbonate buildups.—Amer. Ass. Petrol. Geol. Bull.51, 2462–2467, TulsaGoogle Scholar
  58. STORR, J.F. (1964): Ecology and oceanography of the coral-reef tract, Abaco Island, Bahamas.—Geol. Soc. Amer. Spec. Paper79, 1–98, New YorkGoogle Scholar
  59. TOLLMANN, A. (1984): Entstehung und Werdegang der Tethys.—Mitt. Österr. Geol. Ges.77, 93–113, WienGoogle Scholar
  60. — (1986): Geologie von Österreich. Band 3.—718 p., Wien (Deuticke)Google Scholar
  61. TRACEY, J.I., LADD, H.S. & HOFFMEISTER, J.E. (1948): Reefs of Bikini, Marshall Islands.—Geol. Soc. Amer. Bull.59, 861–878, New YorkGoogle Scholar
  62. VOGEL, K. (1963): Riff, Biocherm, Biostrom—Versuch einer Begriffserklärung.—N. Jb. Geol. Paläont. Mh1963, 680–688, StuttgartGoogle Scholar
  63. WALKER, K.R. & ALBERSTADT, L.P. (1975): Ecological successions an aspect of structure in fossil communities.—Paleobiology1, 238–257, WashingtonGoogle Scholar
  64. WILKINSON, C.R. (1983): Role of sponges in coral reef structural processes.—In: BARNES, D.J. (ed.): Perspectives on coral reefs.—Austral. Inst. Marine Sci., 263–274Google Scholar
  65. WURM, D. (1982): Mikrofazies, Paläontologie und Palökologie der Dachsteinriffkalke (Nor) des Gosaukammes, Österreich.—Facies6, 1203–296, ErlangenGoogle Scholar
  66. ZANKL, H. (1967): Die Karbonatsedimente der Obertrias in den nördlichen Kalkalpen.—Geol. Rundschau56, 128–139, StuttgartCrossRefGoogle Scholar
  67. — (1969): Der Hohe Göll: Aufbau und Lebensbild eines Dachsteinkalk-Riffes in der Obertrias der Nördlichen Kalkalpen.—Abh. Senckenberg. Naturforsch. Ges.519, 1–123, FrankfurtGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1987

Authors and Affiliations

  • Robert J. StantonJr.
    • 1
  • Erik Flügel
    • 2
  1. 1.Department of GeologyTexas A&M UniversityCollege Station
  2. 2.Institut für Paläontologie der UniversitätErlangen

Personalised recommendations