, 16:11 | Cite as

The role of microarchitecture and microstructure in the preservation of taxonomic closely related scleractinians

  • Wolf-Christian Dullo


The scleractiniansAcropora palmata andAcropora cervicornis are common framebuilders in the various Pleistocene fringing reefs of Barbados. Both exihit the same diagenetic fabrics, but the rate of diagenetic alteration varies considerably.A. cervicornis is dominated by dissolution with minor calcite precipitation or neomorphism. This leads to a drastic reduction of the fossil record in older terraces. In contrast,A. palmata still has relics of unaltered microstructure in the older reefs. This difference in record potential is a result of the genetically fixed diameter of the polycrystalline fibers comprising the spherulitic trabecular microstructure; these are distinctly thicker inA. palmata.

Key Words

Scleractinian Corals Microstructure Diagenesis of Fossils Pleistocene Barbados 

Die Bedeutung der Mikroarchitektur und Mikrostruktur in der Fossilüberlieferung taxonomisch eng verwandter Steinkorallen


Die in verschieden alten Saumriffen im Pleistozän von Barbados auftretenden, riffbildenden KorallenAcropora palmata undA. cervicornis weisen entsprechende Diagenesemuster auf. Die Rate der diagenetischen Veränderung ist jedoch deutlich verschieden. BeiA. cervicornis überwiegt Lösung mit geringer Kalzitsprossung und Neomorphose; diese führt zu einer drastischen Abnahme dieser Art in älteren Riffterrassen.A. palmata hingegen zeigt bis in den ältesten Vorkommen Relikte der ursprünglichen Mikrostruktur. Diese Unterschiede werden auf die durch die genetische Information auf Artniveau festgelegte Dimension der sich aus einzelnen polykristallin zusammmengesetzten Aragonitnadeln zurückgeführt, die inA. palmata deutlich größer ist.


  1. BATHURST, R.G.C. (1971): Carbonate sediments and their diagenesis.—Dev. Sed.12, 620 pp., 359 Figs., 24 Tabs., Amsterdam-London-New York (Elsevier).Google Scholar
  2. BRUNI, F.S. & WENK, H.R. (1985): Replacement of aragonite by calcite in sediments from the San Cassiano Formation (Italy).—J. Sed. Petrol.55, 159–170, 10 Figs., 2 Tabs., TulsaGoogle Scholar
  3. CONSTANTZ, B.R. (1984): Functional comparison of the microarchitecture ofAcropora palmata andAcropora cervicornis.—Palaeontographica americana54, 548–551, 1 pl., Ithaca, N.Y.Google Scholar
  4. — (1986): The primary surface of corals and variations in their susceptibility to diagenesis.—In SCHROEDER, J.H. & PURSER, B. (eds.): Diagenesis of Reefs.—53–76, 8 Figs., Heidelberg-Berlin-New York (Springer)Google Scholar
  5. DULLO, W.-Chr. (1983) Fossildiagenese im miozänen Leithakalk der Paratethys von Österreich: Ein Beispiel für Faunenverschiebungen durch Diageneseunterschiede.— Facies8, 1–112, Taf. 1–15, 22 Abb., 2 Tab., ErlangenGoogle Scholar
  6. — (1986): Variation in diagenetic sequences: An example from Pleistocene coral reefs, Red Sea, Saudi Arabia.— In: SCHROEDER, J.H. & PURSER, B. (eds.): Diagenesis of Reefs.—77–90, 7 Figs., 1 Tab., Heidelberg-Berlin-New York (Springer)Google Scholar
  7. DUNHAM, R.J. (1969): Early vadose silt in Townsend Mound (reef), New Mexico.—in FRIEDMAN, G.M. (ed.): Depositional environments in carbonate rocks.— Soc. Econ. Paleont. Min. Spec. Publ.14, 139–181, 21 Abb., TulsaGoogle Scholar
  8. GVIRTZMAN, G. & FRIEDMAN, G.M. (1977): Sequence of progressive diagenesis in coral reefs.—Amer. Ass. Petrol. Geol., Studies in Geology4, 357–380, 25 Figs., 7 Tabs., TulsaGoogle Scholar
  9. HUBBARD, J.A.E.B. (1972): Cavity formation in living scleractinian reef corals and fossil analogues.—Geol. Rundsch.61, 551–564, 7 Figs., StuttgartCrossRefGoogle Scholar
  10. JAMES, N.P. (1972): Holocene and Pleistocene calcareous crust (caliche) profiles: Criteria for subaerial exposure.— J. Sed. Petrol.42, 817–836, 12 Figs., 1 Tab., TulsaGoogle Scholar
  11. — (1974): Diagenesis of scleractinian corals in the subaerial vadose environment.—J. Palaeont.48, 785–799, 11 Figs., TulsaGoogle Scholar
  12. JAMES, N.P., STEARN, C.W. & HARRISON, R.S. (1977): Field guide book to modern and Pleistocene reef carbonates, Barbados W.I.—Third International Symp. on Coral Reefs1977, 30 pp., 9 Figs., MiamiGoogle Scholar
  13. MACINTYRE, I.G. (1977): Distribution of submarine cements in a modern Carribean fringing reef, Galatea Point, Panama.—J. Sed. Petrol.47, 503–516, 9 Figs., TulsaGoogle Scholar
  14. — (1984): Preburial and shallow-subsurface alteration of modern scleractinian corals.—Palaeontographica Amer.54, 229–244, 2 pls., Ithaca N.Y.Google Scholar
  15. MATTHEWS, R.K. (1967): Diagenetic fabrics of biosparites from the Pleistocene of Barbadows, W.I.—J. Sed. Petrol.37, 1147–1153, 3 Figs., TulsaGoogle Scholar
  16. — (1968): Carbonate diagenesis: Equilibrium of sedimentary mineralogy to the subaerial environment. Coral Cap of Barbados. West Indies.—J. Sed. Petrol.38, 1110–1119, 9 Figs., 1 Tab., TulsaGoogle Scholar
  17. MESOLLELA, K.J. (1967): The uplifted reefs of Barbados, physical stratigraphy, facies relationships, and absolute chronology.—Thesis, Brown UniversityGoogle Scholar
  18. MESOLLELA, K.J., MATTHEWS, R.K., BROEKER, W.S. & THURBER, D.L. (1969): The astronomic theory of climate change: Barbados data.—J. Geology77, 250–274, 6 Figs., 2 Tabs., ChicagoCrossRefGoogle Scholar
  19. PINGITORE, N.E. (1970): Diagenesis and porosity modification inAcropora palmata, Pleistocene of Barbados, West Indies.—J. Sed. Petrol.40, 712–722, 8 Figs., TulsaGoogle Scholar
  20. — (1976): Vadose and phreatic diagenesis, process, products, and their recognition in corals.—J. Sed. Petrol.46, 985–1006, 10 Figs., TulsaGoogle Scholar
  21. — (1978): The behaviour of Zn2+ and Mn2+ during carbonate diagenesis: Theory and applications.—J. Sed. Petrol.48, 799–814, 5 Figs., TulsaGoogle Scholar
  22. SANDBERG, P.A. Aragonite cements and their occurence in ancient limestones.—in SCHNEIDERMANN, N. & HARRIS, P.M. (eds.): Carbonate cements.—Soc. Econ. Paleont. Miner. Spec. Publ.36, 33–58, 11 Figs., TulsaGoogle Scholar
  23. SCHERER, M. (1975): Cementation and replacement of Pleistocene corals from the Bahamas and Florida: Diagenetic influence on non marine environments.—N. Jb. Geol. Paläont. Abh.149, 259–285, 13 Figs., StuttgartGoogle Scholar
  24. SCHROEDER, J.H. (1984): The petrogenetogram of corals: Spatial varations in diagenetic sequences.—Palaeonto-graphica Amer.54, 261–271, 6 Figs., Ithaca N.Y.Google Scholar
  25. SCHUHMACHER, H. & PLEWKA, M. (1982): The adaptive significance of mechanical properties versus morphological adjustments in skeletons ofAcropora palmata andAcropora cervicornis (Cnidaria, Scleractinia).— Proc. Fourth Intern. Coral Reef Symp.1981/2, 121–128, 11 Figs., ManilaGoogle Scholar
  26. SORAUF, J.E. (1980): Biomineralization, structure, and diagenesis of the coelenterate skeleton.—Acta Palaeontol. Polonica25, 327–343, 3 Figs., pls., 13–17, Warszawa.Google Scholar
  27. WAINWRIGHT, S.A. (1964): Studies of the mineral phase of coral skeleton. Experimental Cell Res.34, 213–230, 8 Figs., ChicagoCrossRefGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1987

Authors and Affiliations

  • Wolf-Christian Dullo
    • 1
  1. 1.Institut für Paläontologie der Universität ErlangenErlangen

Personalised recommendations