Skip to main content
Log in

The reaction of low levels of nitrogen dioxide with methyl linoleate in the presence and absence of oxygen

  • Article
  • Published:
Lipids

Abstract

The reaction of methyl linoleate with low levels of nitrogen dioxide in a carrier gas, such as helium or air, at nitrogen dioxide concentrations ranging from 2 to 228 ppm was studied and the products formed were monitored. In both aerobic and anaerobic conditions, low concentrations of nitrogen dioxide reacted with methyl linoleate predominately to form allylic products. When a 1∶1 mixture of methyl palmitate/methyl linoleate was layered over an aqueous buffer and a nitrogen dioxide stream was passed from underneath, so that the stream passed through the aqueous layer before contacting the organic layer, allylic products again predominated. In the absence of air, the allylic products consisted of allylic nitro and nitrite derivatives of linoleate, whereas in the presence of air, allylic hydroperoxides were the principal products. The findings suggest that fatty acids with doubly allylic hydrogen atoms react preferentially by a hydrogen atom abstraction reaction rather than by the addition of nitrogen dioxide to a double bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AN:

allylic nitro or nitrite compounds

c :

cis double bond

DTPA:

diethylenetriaminepentaacetic acid

GC:

gas chromatography

GC/MS:

gas chromatography/mass spectrometry

HPLC:

high-performance liquid chromatography

IR:

infrared

NCI:

negative chemical ionization

NMR:

nuclear magnetic resonance

t :

trans double bond

UV:

ultraviolet

vinyl nitro:

mixture of methyl 9-nitro-9,12-octadecadienoate and methyl 13-nitro-9,12-octadecadienoate

vinyl nitrate:

mixture of methyl 9-nitrato-9,12-octadecadienoate, methyl 10-nitrato-9,12-octadecadienoate, methyl 12-nitrato-9,12-octadecadienoate, and methyl 13-nitrato-9,12-octadecadienoate

c,t-18∶2:

mixture of methylcis-9,trans 12-octadecadienoate and methyltrans-9,cis-12-octadecadienoate

9c, 11t-13AN:

mixture of methyl 13-nitrito-cis-9,trans-11-octadecadienoate and methyl 13-nitro-cis-9,trans-11-octadecadienoate

9c, 11t-13HP:

methyl 13-hydroperoxy-cis-9,trans-11-octadecadienoate

9c, 11t-13AN:

mixture of methyl 13-nitrito-trans-9,trans-11-octadecadienoate and methyl 13-nitro-trans-9,trans-11-octadecadienoate

9t,11t-13HP:

methyl 13-hydroperoxy-trans-9,trans-11-octadecadienoate

10t, 12c-9AN:

mixture of methyl 9-nitrito-trans-10,cis-12-octadecadienoate and methyl 9-nitro-trans-10,cis-12-octadecadienoate

10t, 12c-9HP:

methyl 9-hydroperoxy-trans-10,cis-12-octadecadienoate

10t, 12t-9AN:

mixture of methyl 9-nitrito-trans-10,trans-12-octadecadienoate and methyl 9-nitro-trans-10,trans-12-octadecadienoate

10t, 12t-9HP:

methyl-9-hydroperoxy-trans-10,trans-12-octadecadienoate

References

  1. Roehm, J.N., Hadley, J.G., and Menzel, D.B. (1971)Arch. Intern. Med. 128, 88–93.

    Article  PubMed  CAS  Google Scholar 

  2. Patel, J.M., and Block, E.R. (1986)Am. Rev. Respir. Dis. 134, 1196–1202.

    PubMed  CAS  Google Scholar 

  3. Stephen, R.J., Freeman, G., and Evans, M. (1972)Arch. Environ. Health 24, 160–179.

    Google Scholar 

  4. Freeman, G., Juhos, L.T., Nazzareno, J.F., Mussenden, R., Stephens, R.J., and Evans, M.J. (1974)Arch. Environ. Health 29, 203–210.

    PubMed  CAS  Google Scholar 

  5. Thomas, H.V., Mueller, P.K., and Lyman, R.L. (1968)Science 159, 532–534.

    Article  PubMed  CAS  Google Scholar 

  6. Mead, J.R. (1976) inFree Radicals in Biology (Pryor, W.A., ed.) Vol. 1, pp. 51–68, Academic Press, New York.

    Google Scholar 

  7. Dawson, S.V., and Schenker, M.B. (1979)Am. Rev. Respir. Dis. 120, 281–292.

    PubMed  CAS  Google Scholar 

  8. Guidotti, T.L. (1978)Environ. Res. 15, 443–472.

    Article  PubMed  CAS  Google Scholar 

  9. Richter, A. (1988)J. Toxicol. Environ. Health 25, 383–390.

    Article  Google Scholar 

  10. Pryor, W.A., Lightsey, J.W., and Church, D.F. (1982)J. Am. Chem. Soc. 104, 6685–6692.

    Article  CAS  Google Scholar 

  11. Pryor, W.A., and Lightsey, J.W. (1981)Science 214, 435–437.

    Article  CAS  PubMed  Google Scholar 

  12. Gallon, A.A., and Pryor, W.A. (1993)Lipids 28, 125–133.

    PubMed  CAS  Google Scholar 

  13. Postlethwait, E.M., and Bidani, A. (1989)Toxicol. Appl. Pharmacol. 98, 303–312.

    Article  PubMed  CAS  Google Scholar 

  14. Spring, J.L., Akimoto, H., and Pitts, J.N. (1974)J. Am. Chem. Soc. 96, 6549–6554.

    Article  Google Scholar 

  15. Shechter, H. (1964)Rec. Chem. Prog. 25, 55–76.

    CAS  Google Scholar 

  16. Saltzman, B.E. (1954)Anal. Chem. 26, 1949–1955.

    Article  CAS  Google Scholar 

  17. Gallon, A.A. (1990) The Mechanism of How Low Levels of Nitrogen Dioxide React with Polyunsaturated Fatty Acid Esters, Ph.D. Thesis, Louisiana State University, Baton Rouge, pp. 45–47.

    Google Scholar 

  18. McLafferty, F.W., and Stauffer, D.B. (1989)The Wiley/NBS Registry of Mass Spectral Data, Vol. 3, pp. 2637, 2685, John Wiley & Sons, Inc., New York.

    Google Scholar 

  19. Kobayashi, T. (1980)J. Chromatogr. 194, 404–409.

    Article  CAS  Google Scholar 

  20. Pouchert, C.J. (1983)The Aldrich Library of NMR Spectra, 2nd edn., pp. 86, 88 and 434, 435, Aldrich Chemical Co., Milwaukee.

    Google Scholar 

  21. Silverstein, R.M., Bassler, G.C., and Morril, T.C., (1981)Spectrometric Identification of Organic Compounds, 4th edn., pp. 130, 131, 173, John Wiley & Sons, Inc., New York.

    Google Scholar 

  22. Bouma, W.J., and Jennings, K.R. (1981)Org. Mass Spectrom. 16, 331–335.

    Article  CAS  Google Scholar 

  23. March, J. (1985)Advanced Organic Chemistry, 3rd edn., pp. 739, John Wiley & Sons, Inc., New York.

    Google Scholar 

  24. Gray, P. (1955)Trans. Faraday Soc. 51, 1367–1374.

    Article  CAS  Google Scholar 

  25. Pouchert, C.J. (1981)The Aldrich Library of Infrared Spectra, 3rd edn., p. 1425, Aldrich Chemical Co., Milwaukee.

    Google Scholar 

  26. Kenley, R.A., and Hendry, D.G. (1982)J. Am. Chem. Soc. 104, 220–224.

    Article  CAS  Google Scholar 

  27. Lachowiez, D.R., and Kievz, K.L. (1967)J. Org. Chem. 32, 3885–3888.

    Article  Google Scholar 

  28. Duynstee, E.F.J., Hennekens, J.L.J.P., Van Raayen, W., and Voskuil, W. (1971)Tetrahedron Lett. 34, 3197–3200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Gallon, A.A., Pryor, W.A. The reaction of low levels of nitrogen dioxide with methyl linoleate in the presence and absence of oxygen. Lipids 29, 171–176 (1994). https://doi.org/10.1007/BF02536725

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536725

Keywords

Navigation