Skip to main content
Log in

n-3 fatty acids inhibit defects and fatty acid changes caused by phenytoin in early gestation in mice

  • Article
  • Published:
Lipids

Abstract

Our previous work has shown that n-3 fatty acids exert a protective effect against phenytoin-induced cleft palate when phenytoin was administered midgestation [gestational days (GD) 12 and 13] to CD-1 mice. The effects of dietary n-3 fatty acids on phenytoin teratogenicity were investigated at an earlier gestational period (GD 9) to examine whether n-3 fatty acids could exert protective action against other teratogenic effects of phenytoin apart from cleft palate. The effect of phenytoin exposure on maternal hepatic polyunsaturated fatty acid composition was also studied since Δ6 desaturase activity has been shown to be modified by pharmacological action. Female CD-1 mice were fed a standard laboratory diet (SLD), safflower oil (SAFF) or a cod liver/linseed oil (CLO/LO)-based diet for three weeks prior to impregnation and throughout pregnancy. Pregnant mice were administered a single i.p. dose of phenytoin on GD 9, and teratological assessments were performed on GD 19. Tissues were harvested on GD 10 for maternal hepatic phospholipid fatty acid analysis from another group of phenytoin-treated mice. The CLO/LO and the SLD mice, as compared to the SAFF-fed antimals, showed a reduction in total malformations and fetal growth retardation due to phenytoin. Open eye defect was the only anomaly induced by phenytoin in the CLO/LO fetuses while phenytoin produced a variety of malformations in the SAFF fetuses such as tail defects, cleft palate, open eye and absence or blockage of the ureter. Dietary n-6/n-3 fatty acid ratios were reflected in maternal hepatic phospholipids; however, phenytoin exposure appeared to inhibit the conversion of 18∶2n-6 to 20∶4n-6 in the SAFF dams only. These results indicate that the overall protective effects of dietary n-3 fatty acids on phenytoin embryo-toxicity are observed at an early gestational period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

BHT:

butylated hydroxytoluene

CLO/LO:

cod liver oil/linseed oil

FAME:

fatty acid methyl esters

FHS:

Fetal Hydantoin Syndrome

GD:

gestational day

PGF :

prostaglandin F

PGS:

prostaglandin H synthase

PUFA:

polyunsaturated fatty acids

SAFF:

safflower oil

SLD:

standard laboratory diet

TBA:

thiobarbituric acid

TBARS:

thiobarbituric acid reactive substances

References

  1. Hanson, J.W. (1976)Teratology, 13, 185–188.

    Article  Google Scholar 

  2. Kelly, T.E. (1984)Am. J. Med. Genet. 49, 445–450.

    Article  Google Scholar 

  3. Strickler, S.M., Miller, M.A., Andermann, E., Dansky, L.V., Seni, M., and Spielberg, S.P. (1985)Lancet 2, 746–749.

    Article  PubMed  CAS  Google Scholar 

  4. Harbison, R.D., and Becker, B.A. (1970)J. Pharmacol. Exp. Ther. 22, 283–288.

    Google Scholar 

  5. Lum, J.T., and Wells, P.G. (1986)Teratology 33, 53–72.

    Article  PubMed  CAS  Google Scholar 

  6. Elshove, J. (1969)Lancet, 2, 1074.

    Article  PubMed  CAS  Google Scholar 

  7. Eluma, F.O., Sucheston, M.E., Hayes, T.G., and Paulson, R.B. (1984)J. Craniofac. Genet. Dev. Biol. 4, 191–210.

    PubMed  CAS  Google Scholar 

  8. Hansen, D.K., and Hodes, M.E. (1983)Teratology 28, 175–179.

    Article  PubMed  CAS  Google Scholar 

  9. Finnell, R.H. (1981)Science 211, 483–484.

    Article  PubMed  CAS  Google Scholar 

  10. Hansen, D.K. (1991)Proc. Soc. Exp. Biol. Med. 197, 361–368.

    PubMed  CAS  Google Scholar 

  11. Kubow, S., and Wells, P.G. (1989)Mol. Pharm. 35, 504–511.

    CAS  Google Scholar 

  12. Kubow, S. (1992)Lipids 27, 721–728.

    PubMed  CAS  Google Scholar 

  13. Mitchell, M.O. Brennecke, S.P., Saeed, S.A., and Strickland, D.M. (1985) inBiological Protection with Prostaglandins (Cohen, M.M. ed.) Vol. 1, pp. 27–44, CRC Press, Boca Raton.

    Google Scholar 

  14. Wells, P.G., Zubovits, J.T., Wong, S.T., Molinari, L.M., and Ali, S. (1989)Toxicol. Appl. Pharm. 97, 192–202.

    Article  CAS  Google Scholar 

  15. Roberts, L.G., Laborde, J.B., and Slikker, Jr., W. (1991)Teratology 44, 497–505.

    Article  PubMed  CAS  Google Scholar 

  16. Brenner, R.R., and Peluffo, R.O. (1966)J. Biol. Chem. 241, 5213–5219.

    PubMed  CAS  Google Scholar 

  17. ThornPren, M., and Gustafson, A. (1981)Lancet 2, 1190–1193.

    Article  Google Scholar 

  18. Herold, P.M., and Kinsella, J.E. (1986)Am. J. Clin. Nutr. 43, 566–598.

    PubMed  CAS  Google Scholar 

  19. Lands, W.E.M., and Byrnes, M.J. (1981)Prog. Lipid Res. 20, 287–290.

    Article  PubMed  CAS  Google Scholar 

  20. Nassar, B.A., Das, U.N., Huang, Y-S., Ells, G., and Horrobin, D.F. (1992)Proc. Soc. Exp. Biol. Med. 199, 365–368.

    PubMed  CAS  Google Scholar 

  21. American Institute of Nutrition (1977)J. Nutr. 107, 1340–1348.

    Google Scholar 

  22. Fergusson, M.A., and Koski, K.G. (1990)J. Nutr. 120, 1312–1319.

    PubMed  CAS  Google Scholar 

  23. Swanson, J.E., and Kinsella, J.E. (1986)J. Nutr. 116, 514–523.

    PubMed  CAS  Google Scholar 

  24. Meydani, S.N., Shapiro, A.C., Meydani, M., Macauley, J.B. (1987)Lipids 22, 345–350.

    Article  PubMed  CAS  Google Scholar 

  25. Dahle, I.K., Hill, E.G., and Holman, R.T. (1962)Arch. Biochem. Biophys. 98, 253–261.

    Article  PubMed  CAS  Google Scholar 

  26. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 227, 497–509.

    Google Scholar 

  27. Kinsella, J.E. (1991) inNutritional and Toxicological Consequences of Food Processing, (Friedman, M., ed.) pp. 255–268, Plenum Press, New York.

    Google Scholar 

  28. Rowland, J.R., Binkerd, P.E., and Hendrickx, A.G. (1990)Reprod. Toxicol. 4, 191–202.

    Article  PubMed  CAS  Google Scholar 

  29. Juaneda, P., and Rocquelin, G. (1985)Lipids 20, 40–41.

    Article  PubMed  CAS  Google Scholar 

  30. Chapman, J.R., and Roberts, D.W. (1984)Teratology 30, 107–117.

    Article  PubMed  CAS  Google Scholar 

  31. Harbison, R.D., and Becker, B.A. (1969)Teratology 2, 305–312.

    Article  PubMed  CAS  Google Scholar 

  32. Harris, M.J., Juriloff, D.M., and Biddle, F.G. (1984)Teratology 29, 287–295.

    Article  PubMed  CAS  Google Scholar 

  33. Harris, M.J., and Juriloff, D.M. (1986)J. Embryol. Exp. Morph. 91, 1–18.

    PubMed  CAS  Google Scholar 

  34. Maconnachie, E. (1979)J. Embryol. Exp. Morph. 49, 259–276.

    PubMed  CAS  Google Scholar 

  35. Burch, R.M., Luini, A., and Axelrod, J. (1986)Proc. Natl. Acad. Sci. USA 83, 7201–7205.

    Article  PubMed  CAS  Google Scholar 

  36. Cunnane, S.C., Kent, E.T., McAdoo, K.R., Caldwell, D., Lin, A.N., and Carter, D.M. (1987)J. Invest. Dermatol. 89, 395–399.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

High, K.A., Kubow, S. n-3 fatty acids inhibit defects and fatty acid changes caused by phenytoin in early gestation in mice. Lipids 29, 771–778 (1994). https://doi.org/10.1007/BF02536699

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536699

Keywords

Navigation