Skip to main content
Log in

Antagonism of [3H]fatty acid incorporation into vimentin by sodium pyruvate: Pitfalls of protein acylation

  • Method
  • Published:
Lipids

Abstract

In the course of studying possible fatty acid acylation of vimentin by cultured bovine lens epithelial cells, several potential pitfalls of protein-fatty acid acylation were recognized. Even exhaustive delipidation of vimentin with organic solvents failed to remove all noncovalently associated [3H]palmitate and [3H]myristate. Hydroxylamine treatment of vimentin, separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), failed to remove either palmitate or myristate derived radiolabel. Hydroxylamine treatment did remove palmitate label from a group of lower molecular weight proteins. The myristate radiolabel associated with vimentin recovered after SDS-PAGE and subjected to acid hydrolysis was shown due to incorporated [3H]amino acids, mainly glutamic acid, generated from the fatty acid. Adding excess sodium pyruvate to labeling media has been used by others to reduce the metabolic conversion of fatty acids to amino acids; however, no direct evidence in support of this antagonism was presented. We observed that inclusion of sodium pyruvate at between 5 and 20 mM in the labeling medium produced a dramatic decrease in incorporation of myristic acid radiolabel into vimentin. However, inclusion of even 20 mM pyruvate did not completely antagonize the metabolic conversion of fatty acid label to amino acids. Furthermore, the sodium pyruvate antagonism could be totally obscured if the exposure of X-ray film by fluorography was even slightly prolonged. The results illustrate the danger in assuming that solvent extraction totally delipidates proteins and that adding sodium pyruvate to labeling media prevents the transfer of fatty acid label to amino acids. Caution is necessary to conclude that radiolabel associated with specific proteins following incubation of cells with labeled fatty acid is due to covalent attachment of the fatty acid to the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco's modified Eagle's media

EDTA:

ethylenediaminetetraacetic acid

EGTA:

ethyleneglycol-bis(β-aminoethyl ether)N,N,N′,N′-tetraacetic acid

PBS:

physiological buffered saline

Py :

pyruvate

SDS-PAGE:

sodium dodecylsulfate-polyacrylamide gel electrophoresis

TCA:

trichloroacetic acid

TLCK:

N-α-p-tosyl-l-lysine chloromethyl ketone

Tris:

tris(hydroxymethyl)aminomethane

V:

vimentin

Vd :

vimentin degradation products

References

  1. Olson, E.N., Towler, D.A., and Glaser, L. (1985)J. Biol. Chem. 260, 3784–3790.

    PubMed  CAS  Google Scholar 

  2. Iozzo, R.V., Kovalszky, I., Hacobian, N., Schick, P.K., Ellingson, J.S., and Dodge, G.R. (1990)J. Biol. Chem. 265, 19980–19989.

    PubMed  CAS  Google Scholar 

  3. Burn, P., and Burger, M.M. (1987)Science 235, 476–479.

    Article  PubMed  CAS  Google Scholar 

  4. Georgatos, S.D., and Blobel, G. (1987)J. Cell Biol. 105, 105–115.

    Article  PubMed  CAS  Google Scholar 

  5. Stadler, J., Gerisch, G., Bauer, G., and Deppert, W. (1985)EMBO J. 4, 1153–1156.

    PubMed  CAS  Google Scholar 

  6. Staufenbiel, M., and Lazarides, E. (1986)Proc. Natl. Acad. Sci. USA 83, 318–322.

    Article  PubMed  CAS  Google Scholar 

  7. Hitchner, W.R., and Cenedella, R.J. (1985)J. Lipid Res. 26, 1455–1463.

    Google Scholar 

  8. James, G., and Olson, E.N. (1989)J. Biol. Chem. 264, 20998–21006.

    PubMed  CAS  Google Scholar 

  9. Laemmli, U.K. (1970)Nature (London) 227, 680–685.

    Article  CAS  Google Scholar 

  10. Georgatos, S.D., Weaver, D.C., and Marchesi, V.T. (1985)J. Cell Biol. 100, 1962–1967.

    Article  PubMed  CAS  Google Scholar 

  11. Smith, I. (1969) inChromatographic and Electrophoretic Techniques, (Smith, I., ed.) Vol. 1, pp. 104–169, John Wiley & Sons, Inc., New York.

    Google Scholar 

  12. Lieska, N., Chen, J., Maisel, H., and Romero-Heirera, A.E. (1980)Biochim. Biophys. Acta 626, 136–153.

    PubMed  CAS  Google Scholar 

  13. Ferrari, S., Battini, R., Kaczmarek, L., Rittling, S., Calabretta, B., DeRial, J.K., Philiponis, V., Wei, J.F., and Baserga, R. (1986)Mol. Cell Biol. 6, 3614–3620.

    PubMed  CAS  Google Scholar 

  14. Wood, L., Theriault, N., and Vogeli, G. (1989)Gene 76, 171–175.

    Article  PubMed  CAS  Google Scholar 

  15. Nelson, N.J., and Traub, P. (1981)Eur. J. Biochem. 116, 51–57.

    Article  PubMed  CAS  Google Scholar 

  16. Ireland, M., and Maisel, H. (1984)Curr. Eye Res. 3, 423–429.

    PubMed  CAS  Google Scholar 

  17. Gordon, J.I., Duronio, R.J., Rudnick, D.A., Adams, S.P., and Goke, G.W. (1991)J. Biol. Chem. 266, 8647–8650.

    PubMed  CAS  Google Scholar 

  18. Schmidt, M., Schmidt, M.F., and Rott, R. (1988)J. Biol. Chem. 263, 18635–18639.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Cenedella, R.J., Mitchell, J. Antagonism of [3H]fatty acid incorporation into vimentin by sodium pyruvate: Pitfalls of protein acylation. Lipids 28, 235–240 (1993). https://doi.org/10.1007/BF02536645

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536645

Keywords

Navigation