Skip to main content
Log in

Triacylglycerols of human milk: Rapid analysis by ammonia negative ion tandem mass spectrometry

  • Article
  • Published:
Lipids

Abstract

Human milk traicylglycerols (TAG) were analyzed by ammonia negative ion chemical ionization tandem mass spectrometry. The deprotonated molecular ions of triacylglycerols were fractionated at the first mass spectrometry (MS) stage. Twenty-nine of the deprotonated TAG ions were further analyzed based on their collisionally activated (CA) spectra. The tandem MS analysis covered eleven major acyl carbon number fractions, two of which contained odd carbon number fatty acids. Fatty acids of 28 different molecular weights were recorded from the daughter spectra. Hexadecanoic acid was present in all CA spectra, octadecenoic acid in the CA spectra of all mono- and higher unsaturated TAG, and octadecadienoic acid in the CA spectra of all di- and higher unsaturated TAG. The major fatty acid combinations in triacylglycerols were: with 0 double bonds (DB), 12∶0/12∶0/16∶0; with 1 DB, 12∶0/16∶0/18∶1; with 2 DB, 16∶0/18∶1/18∶1; with 3 DB, 16∶0/18∶2/18∶1; with 4 DB, 18∶2/18∶1/18∶1; and with 5 DB, 18∶2/18∶2/18∶1; hexadecanoic acid typically occupied thesn-2 position. The most abundant TAG was shown to besn-18∶1–16∶0–18∶1, comprising about 10% of all triacylglycerols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACN:

acyl carbon number

CA:

collisional activation

DB:

double bonds

FA:

fatty acid

GC:

gas chromatography

HPLC:

high-performance liquid chromatography

MS:

mass spectrometry

MS/MS:

tandem mass spectrometry

MW:

molecular weight

NICI MS:

negative ion chemical ionization mass spectrometry

TAG:

triacylglycerols

References

  1. Walstra, P., and Jenness, R. (1984)Dairy Chemistry and Physics, pp. 58–65, John Wiley and Sons, New York.

    Google Scholar 

  2. Freeman, C.P., Jack, E.L., and Smith, L.M. (1965)J. Dairy Sci. 48, 853–858.

    PubMed  CAS  Google Scholar 

  3. Kuksis, A., Myher, J.J., and Marai, L. (1984)J. Am. Oil Chem. Soc. 61, 1582–1589.

    CAS  Google Scholar 

  4. Kuksis, A., Myher, J.J., and Marai, L. (1985)J. Am. Oil Chem. Soc. 62, 762–767.

    Article  CAS  Google Scholar 

  5. Kuksis, A., Myher, J.J., and Marai, L. (1985)J. Am. Oil Chem. Soc. 62, 767–773.

    CAS  Google Scholar 

  6. Breckenridge, W.C., and Kuksis, A. (1967)J. Lipid Res. 8, 473–478.

    PubMed  CAS  Google Scholar 

  7. Breckenridge, W.C., Marai, L., and Kuksis, A. (1969)Can. J. Biochem. 47, 761–769.

    Article  PubMed  CAS  Google Scholar 

  8. Kuksis, A., and Breckenridge, W.C. (1968) inDairy Lipids and Lipid Metabolism (Brink, M.F., and Krichevsky, D., eds.) pp. 28–98, AVI, Westport.

    Google Scholar 

  9. Weber, K., Schulte, E., and Thier, H.-P. (1988)Fat. Sci. Technol. 9, 341–344.

    Google Scholar 

  10. Lammi-Keefe, C.J., and Jensen, R.G. (1984)J. Pediatr. Gastroenterol. Nutr. 3, 172–198.

    Article  PubMed  CAS  Google Scholar 

  11. Davies, D.T., Holt, C., and Christie, W.W. (1983) inBiochemistry of Lactation (Mepham, T.B., ed.), pp. 71–117, Elsevier, New York.

    Google Scholar 

  12. Jensen, R.G. (1989)The Lipids of Human Milk, CRC Press, Inc., Boca Raton.

    Google Scholar 

  13. Watts, R., and Dils, R. (1968)Lipids 3, 471–476.

    Article  CAS  PubMed  Google Scholar 

  14. Tomii, S., Arachi, H., Ikeda, K., and Mega, T. (1977)J. Nara Med. Ass. 28, 734–739.

    CAS  Google Scholar 

  15. Yoon, T.-H., and Im, K.-J. (1985)J. Korean Soc. Food Nutr. 14, 39–46.

    CAS  Google Scholar 

  16. Kallio, H., and Currie, G. (1991) presented at the Short Course on HPLC of Lipids, Bloomingdale, May 9–11, p. 5, AOCS.

  17. Kallio, H., and Currie, G. (1992)Lipids 27, 207–215.

    Google Scholar 

  18. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  19. Kallio, H., and Currie, G. (1991) Australian Patent Application, No:PK4146, January 9.

  20. Rey, J., Rey, F., and Schmitz, J. (1974)Biomedicine 2, 90–94.

    Google Scholar 

  21. Christie, W.W. (1988)J. Chromatogr. 454, 273–284.

    Article  PubMed  CAS  Google Scholar 

  22. Harzer, G., Haug, M., Dieterich, I., and Gentner, P.R. (1983)Am. J. Clin. Nutr. 37, 612–621.

    PubMed  CAS  Google Scholar 

  23. Gibson, R.A., and Kneebone, G.M. (1984)Lipids 19, 469–471.

    Article  PubMed  CAS  Google Scholar 

  24. Christie, W.W., and Clapperton, J.L. (1982)J. Soc. Dairy Technol. 35, 22–24.

    CAS  Google Scholar 

  25. Weber, K., Schulte, E., and Thier, H.-P. (1989)Fat Sci. Technol. 3, 113–115.

    Google Scholar 

  26. Insull, Jr., W., Hirsch, T.J., James, T., and Ahrens, Jr., E.H. (1959)J. Clin. Invest. 38, 443–450.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Currie, G.J., Kallio, H. Triacylglycerols of human milk: Rapid analysis by ammonia negative ion tandem mass spectrometry. Lipids 28, 217–222 (1993). https://doi.org/10.1007/BF02536642

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536642

Keywords

Navigation