Skip to main content
Log in

Steryl esters in a cell suspension culture of celery (Apium graveolens)

  • Published:
Lipids

Abstract

Arange of analytical techniques was used to investigate the composition of the steryl fatty acyl esters in a cell suspension culture of celery (Apium graveolens). Gas chromatography (GC) and GC-mass spectrometry (GC-MS), using electron ionization (EI) and negative ion chemical ionization (NICI), were employed to characterize the intact steryl esters. Assignments were supported by analysis of the sterol and fatty acid moieties released from the intact molecular species by alkaline hydrolysis. A selectivity for sterol esterification was noted, with the major free sterol, stigmasterol, occurring only in a very small amount in the esterified form. Instead, the precursors to Δ5-phytosterols, particularly cycloartenol, predominated in the ester fraction. The pentacyclic triterpene, β-amyrin, was also found as the palmitate and linoleate esters. Changes in composition and abundance of the steryl esters during the different growth phases of a celery cell suspension culture were investigated. The total amount of esterified sterols exceeded that of free sterols throughout the growth cycle. The changes observed during growth highlighted differences between the esters of precursor sterols and those of the 4-desmethyl-sterols, and it is postulated that the various steryl esters perform different functions in cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EI:

electron impact ionization

FS:

free sterols

GC:

gas chromatography

M+ :

molecular ion

MS:

mass spectrometry

NICI:

negative ion chemical ionization

SAM:

S-adenosyl-L-methionine

SE:

steryl esters

References

  1. Goad, L.J., Zimowski, J., Evershed, R.P. and Male, V.L. (1987)The Metabolism, Structure and Function of Plant Lipids (Stumpf, P.K., Mudd, J.B., and Nes, W.D., eds.) pp. 95–120, Plenum Press, New York and London.

    Google Scholar 

  2. Bush, P.B., and Grunwald, C. (1972)Plant Physiol. 50, 69–72.

    PubMed  CAS  Google Scholar 

  3. Kintia, P.K., and Wojciechowski, Z.A. (1974)Phytochemistry 13, 2235–2238.

    Article  CAS  Google Scholar 

  4. Garcia, R.E., and Mudd, J.B. (1978)Plant Physiol. 61, 354–356.

    PubMed  CAS  Google Scholar 

  5. Duperon, R., Thiersault, M., and Duperon, P. (1984)Phytochemistry 23, 743–746.

    Article  CAS  Google Scholar 

  6. Heupel, R.C., and Nes, W.D. (1984)J. Nat. Prod. 47, 292–299.

    Article  CAS  Google Scholar 

  7. Kalinowska, M., and Wojciechowski, Z.A. (1984)Phytochemistry 23, 2485–2488.

    Article  CAS  Google Scholar 

  8. Takaoka, D., Matsuo, A., and Hayashi, S. (1987)Phytochemistry 26, 429–432.

    Article  CAS  Google Scholar 

  9. Huang, L.S., and Grunwald, C. (1988)Phytochemistry 27, 2049–2053.

    Article  CAS  Google Scholar 

  10. Kemp, R.J., and Mercer, E.I. (1968)Biochem. J. 110, 111–118.

    PubMed  CAS  Google Scholar 

  11. Kemp, R.J., and Mercer, E.I. (1968)Biochem. J. 110, 119–125.

    PubMed  CAS  Google Scholar 

  12. Hartmann, M.A., Ferne, M., Gigot, C., Brandt, R., and Benveniste, P. (1973)Physiol. Veg. 11, 209–230.

    CAS  Google Scholar 

  13. Janiszowska, W., and Kasprzyk, Z. (1977)Phytochemistry 16, 473–476.

    Article  CAS  Google Scholar 

  14. Garcia, R.E., and Mudd, J.B. (1978)Plant Physiol. 61, 357–360.

    Article  PubMed  CAS  Google Scholar 

  15. Duperon, P. (1971)Physiol. Veg. 9, 373–399.

    CAS  Google Scholar 

  16. Kasprzyk, Z., Pyrek, J., and Turowska, G. (1968)Acta Biochimica Polonica 15, 149–158.

    PubMed  CAS  Google Scholar 

  17. Kemp, R.J., Goad, L.J., and Mercer, E.I. (1967)Phytochemistry 6, 1609–1615.

    Article  CAS  Google Scholar 

  18. Atallah, A.M., Aexel, R.T., Ramsey, R.B., Threlkeld, S., and Nicholas, H.J. (1975)Phytochemistry 14, 1927–1932.

    Article  CAS  Google Scholar 

  19. Atallah, A.M., and Nicholas, H.J. (1974)Lipids 9, 613–622.

    Article  PubMed  CAS  Google Scholar 

  20. Kemp, R.J., Hammam, A.S.A., Goad, L.J., and Goodwin, T.W. (1968)Phytochemistry 7, 447–450.

    Article  CAS  Google Scholar 

  21. Goad, L.J. (1983)Biochem. Soc. Trans. 11, 548–552.

    PubMed  CAS  Google Scholar 

  22. Katz, S.S., and Small, D.M. (1980)J. Biol. Chem. 255, 9753–9759.

    PubMed  CAS  Google Scholar 

  23. Rapp, J.H., Connor, W.E., Lin, D.S., Inahara, T., and Porter, J.M. (1983)J. Lipid Res. 24, 1329–1335.

    PubMed  CAS  Google Scholar 

  24. Hughes, M.A., and Goad, L.J. (1983)Biochem. Soc. Trans. 11, 588–589.

    CAS  Google Scholar 

  25. Whitaker, B.D. (1988)Phytochemistry 27, 3411–3416.

    Article  CAS  Google Scholar 

  26. Lalaguna, F., and Agudo, M. (1989)Phytochemistry 28, 2059–2062.

    Article  CAS  Google Scholar 

  27. Evershed, R.P., Prescott, M.C., Spooner, N., and Goad, L.J. (1989)Steroids 53, 288–309.

    Article  Google Scholar 

  28. Evershed, R.P., Male, V.L., and Goad, L.J. (1987)J. Chromatog. 400, 187–205.

    Article  CAS  Google Scholar 

  29. Kates, M. (1972)Techniques in Lipidology (Work, T.S., and Work, E., eds.) p. 573, Elsevier, Holland, New York.

    Google Scholar 

  30. Evershed, R.P., and Goad, L.J. (1987)Biomed. Env. Mass Spectrom. 14, 131–140.

    Article  CAS  Google Scholar 

  31. Wakeham, S.G., and Frew, N.M. (1982)Lipids 17, 831–843.

    CAS  Google Scholar 

  32. Lusby, W.R., Thompson, M.J., and Kochansky, J. (1984)Lipids 19, 888–901.

    Article  CAS  Google Scholar 

  33. Haughan, P.A., Lenton, J.R., and Goad, L.J. (1988)Phytochemistry 27, 2491–2500.

    Article  CAS  Google Scholar 

  34. Nagai, J., Kawamura, S., and Katsuki, H. (1977)J. Biochem. 81, 1665–1673.

    PubMed  CAS  Google Scholar 

  35. Goad, L.J., Haughan, P.A., and Lenton, J.R. (1988) inPlant Lipids: Targets for Manipulation (Pinfield, N.J., and Stobart, A.K., eds.) pp. 91–105.

  36. Taylor, F.R., and Parks, L.W. (1981)J. Biol. Chem. 256, 13048–13054.

    PubMed  CAS  Google Scholar 

  37. Bailey, R.B., and Parks, L.W. (1975)J. Bacteriol. 124, 606–612.

    PubMed  CAS  Google Scholar 

  38. Taylor, F.R., and Parks, L.W. (1978)J. Bacteriol. 136, 531–537.

    PubMed  CAS  Google Scholar 

  39. Yates, P.J., Haughan, P.A., Lenton, J.R., and Goad, L.J. (1990) inPlant Lipid Biochemistry-Structure and Utilisation (Quinn, P.J., and Harwood, J., eds.) pp. 341–343, Portland Press, London.

    Google Scholar 

  40. Lorenz, R.T., and Parks, L.W. (1990)Antimicrob. Agents & Chemotherapy 34, 1660–1665.

    CAS  Google Scholar 

  41. Baisted, D.J. (1971)Biochem. J. 124, 375–383.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dyas, L., Prescott, M.C., Evershed, R.P. et al. Steryl esters in a cell suspension culture of celery (Apium graveolens). Lipids 26, 536–541 (1991). https://doi.org/10.1007/BF02536600

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536600

Keywords

Navigation