Skip to main content
Log in

Effect of platelet-activating factor on tumor necrosis factor-induced superoxide generation from human neutrophils. Possible involvement of G proteins

  • PAF and Signal Transduction
  • Published:
Lipids

Abstract

The effect of platelet-activating factor (PAF) and of two specific PAF antagonists on tumor necrosis factor (TNF) induced superoxide production by human polymorphonuclear neutrophils (PMN) was examined. PAF alone (0.1 pM to 0.1 nM) failed to evoke superoxide production; however, when PAF was added for 10 min to cells upon prior incubation with 10 ng/mL TNF for 50 min, superoxide production was significantly enhanced as compared to that induced by TNF alone. Maximum amplification (+30%) was obtained with 10 pM PAF; however, the effect was completely abolished by two structurally unrelated PAF antagonists, BN 52021 and BN 52111. The antagonists also decreased by 25% the superoxide production elicited solely by TNF, implicating the involvement of endogenous PAF in this process. Pretreatment of the PMN with either pertussis or cholera toxin attenuated the PAF amplified superoxide production in TNF stimulated cells, suggesting that G proteins sensitive to these toxins may be involved in the mechanisms controlling amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADP:

adenosine-5′-monophosphate

BN 52021:

ginkgolide B

BN 52111:

2-heptadecyl-2-methyl-4-[5-(pyridinium-pentylcarbonyloxymethyl)]-1,3-dioxolane bromide

BSA:

bovine serum albumin

FMLP:

formyl-methionyl-leucyl-phenylalanine

GTP:

guanosine-5′-triphosphate

NADPH:

nicotinamide adenine dinucleotide, reduced form

PAF:

platelet-activating factor

PBS:

phosphatebuffered saline

PMN:

polymorphonuclear neutrophils

TNF:

tumor necrosis factor

References

  1. Malech, H.L., and Gallin, J.I. (1987)New Eng. J. Med., 11, 687–694.

    Google Scholar 

  2. Braquet, P., Touqui, L., Shen, T.S., and Vargaftig, B.B. (1987)Pharmacol. Rev., 39, 97–145.

    PubMed  CAS  Google Scholar 

  3. Cerami, A., and Beutler, B. (1988)Immunology Today, 9, 28–31.

    Article  PubMed  CAS  Google Scholar 

  4. Tracey, K.J., Beutler, B., Lowry, S.F., Merryweather, J., Wolpe, S., Milsark, I.W., Hariri, R.J., Fahey, T.J., Zentella, A., Albert, J.D., Shires, T., and Cerami, A. (1986)Science 234, 470–474.

    Article  PubMed  CAS  Google Scholar 

  5. Ozaki, Y., Ohashi, T., Niwa, Y., and Kume, S. (1988)Inflammation 12, 297–309.

    Article  PubMed  CAS  Google Scholar 

  6. Camussi, G., Bussolino, F., Salvidio, G., and Baglioni, C. (1987)J. Exp. Med., 166, 1390–1404.

    Article  PubMed  CAS  Google Scholar 

  7. Bonavida, B., Mencia-Huerta, J.M., and Braquet, P. (1989)Int. Arch. Allergy Appl. Immunol., 88, 157–160.

    PubMed  CAS  Google Scholar 

  8. Vercellotti, G.M., Yin, H.Q., Gustafson, K.S., Nelson, P.O., and Jacob, H.S. (1988)Blood, 71, 1100–1107.

    PubMed  CAS  Google Scholar 

  9. Berkow, R.L., Wang, D., Larrich, J.W., Dodson, R.W., and Howard, T.H. (1987)J. Immunol., 139, 3783–3791.

    PubMed  CAS  Google Scholar 

  10. Braquet, P. (1987)Drugs of the Future, 12, 643–699.

    Google Scholar 

  11. Braquet, P., Paubert-Braquet, M., Bourgain, R.H., Bussolino, F., and Hosford, D. (1989)J. Lipid Med., 1, 75–112.

    CAS  Google Scholar 

  12. Neer, E.J., and Clapham, D.E. (1988)Nature, 333 129–134.

    Article  PubMed  CAS  Google Scholar 

  13. Broquet, C., and Braquet, P. (1988) French Patent No. 2.616.326.

  14. Valone, F.H., and Epstein, L.B. (1988)J. Immunol., 11, 3945–3950.

    Google Scholar 

  15. Rola-Pleszczynski, M. (1990)J. Lipid Med., 2, S77-S82.

    CAS  Google Scholar 

  16. Sun, X., and Hsueh, W. (1988)J. Clin. Invest., 81, 1328–1331.

    PubMed  CAS  Google Scholar 

  17. Blank, M.L., Lee, T.C. Fitzgerald, V., and Snyder, F. (1981)Biochem. Biophys. Res. Commun., 29, 2472–2477.

    Google Scholar 

  18. Heuer, H., Letts, G., and Meade, C.J. (1990)J. Lipid Med., 2, S101-S108.

    CAS  Google Scholar 

  19. Imamura K., Sherman, M.L., Spriggs, D., and Kufe, D. (1988)J. Biol. Chem., 263, 10247–10253.

    PubMed  CAS  Google Scholar 

  20. Weissmann, G., Dukor, P., and Zurier, R.B. (1971)Nature New Biol., 231, 131–135.

    PubMed  CAS  Google Scholar 

  21. Naccache, P.H., Faucher, N., Borgeat, P., Gasson, J.C., and Dipersio, J.F. (1988)J. Immunol., 140, 3541–3546.

    PubMed  CAS  Google Scholar 

  22. Coffey, R.G., Davis, J.S., and Djeu, J.Y. (1988)J. Immunol., 140, 2695–2701.

    PubMed  CAS  Google Scholar 

  23. Imamura, K., and Kufe, D. (1988)J. Biol. Chem., 263, 14093–14098.

    PubMed  CAS  Google Scholar 

  24. Worthen, G.S., Seccombe, J.F., Clay, K.L., Guthrie, L.A., and Johnston, R.B. (1988)J. Immunol., 140, 3553–3559.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Braquet, P., Hosford, D., Koltz, P. et al. Effect of platelet-activating factor on tumor necrosis factor-induced superoxide generation from human neutrophils. Possible involvement of G proteins. Lipids 26, 1071–1075 (1991). https://doi.org/10.1007/BF02536504

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536504

Keywords

Navigation