Skip to main content
Log in

Properties of PAF-synthesizing phosphocholinetransferase and evidence for lysoPAF acetyltransferase activity in rat brain

  • PAF Metabolism and Its Regulation
  • Published:
Lipids

Abstract

Several reports have indicated that platelet-activating factor (PAF) may play a role in the physiopathology of nervous tissue. We previously have demonstrated the presence, in the microsomal fractions of rat brain, of a phosphocholinetransferase which is able to synthesize PAF by thede novo pathway. The presence of dithiothreitol in the medium increases the rate of PAF biosynthesis, whereas it inhibits the synthesis of long-chain alkylacyl- and diacyl-glycerophosphocholines (GPC), including dioctanoyl-GPC. This and other properties, such as pH dependence and thermal stability, indicate that rat brain may have two distinct enzymes for the synthesis of PAF and other choline phospholipids. The affinity of these enzymes for CDPcholine is similar to that reported for other tissues, the Km being 42 μm and 55 μm with alkylacetylglycerol and dioctanoylglycerol as lipid substrates, respectively. The Vmax values were 3.0 and 2.2 nmol/mg prot/min for PAF and dioctanoyl-GPC, respectively. In addition, it was shown that the microsomal fraction of rat brain contains an acetyltransferase which can convert lysoPAF to PAF. Since it has been reported previously that brain tissue possesses phospholipase A2 activity that can hydrolyze alkylacyl-GPC to lysoPAF, we conclude that brain tissue has all enzymic activities for the synthesis of PAF by the “remodeling pathway”. The role of the two routes of PAF biosynthesis in nervous tissue remains to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DO:

dioctanoyl

DTT:

dithiothreitol

G:

glycerol

GPC:

glycero-3-phosphocholine

PAF:

platelet-activating factor, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine

References

  1. Tokumura, A., Kamiyasu, K., Takauchi, K., and Tsukatani, H. (1987)Biochem. Biophys. Res. Commun. 145, 415–425.

    Article  PubMed  CAS  Google Scholar 

  2. Tokumura, A., Takauchi, K., Asai, T., Kamiyasu, K., Ogawa, T. and Tsukatani, H. (1989)J. Lipid Res. 30, 219–224.

    PubMed  CAS  Google Scholar 

  3. Kumar, R., Harvey, S.A.K., Kester, M., Hanahan, D.J., and Olson, M.S. (1988)Biochim. Biophys. Acta 963, 375–383.

    PubMed  CAS  Google Scholar 

  4. Bussolino, F., Gremo, F., Tetta, C., Pescarmona, G.P., and Camussi, G. (1986)J. Biol. Chem. 261, 16502–16508.

    PubMed  CAS  Google Scholar 

  5. Kornecki, E., and Ehrlich, Y.H. (1988)Science 240, 1792–1794.

    Article  PubMed  CAS  Google Scholar 

  6. Panetta, T., Marcheselli, V.L., Braquet, P., Spinnewyn, B., and Bazan, N.G. (1987)Biochem. Biophys. Res. Commun. 149, 580–587.

    Article  PubMed  CAS  Google Scholar 

  7. Bazan, N.G. (1970)Biochim. Biophys. Acta 149, 580–587.

    Google Scholar 

  8. De Medio, G.E., Goracci, G., Horrocks, L.A., Lazarewicz, J.W., Mazzari, S., Porcellati, G., Strosznajder, J., and Trovarelli, G. (1980)Ital. J. Biochem. 29, 412–432.

    PubMed  Google Scholar 

  9. Snyder, F. (1987) inNew Horizons in Platelet Activating Factor Research (Winslow, C.M., and Lee, M.L., eds.), pp. 13–25, J. Wiley and Sons, Ltd., London.

    Google Scholar 

  10. Renooij, W., and Snyder, F. (1981)Biochim. Biophys. Acta 663, 545–556.

    PubMed  CAS  Google Scholar 

  11. Wykle, R.L., Malone, B., and Snyder, F. (1980)J. Biol. Chem. 255, 10256–10260.

    PubMed  CAS  Google Scholar 

  12. Francescangeli, E., and Goracci, G. (1989)Biochem. Biophys. Res. Commun. 161, 107–112.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, T-c., Malone, B., and Snyder, F. (1986)J. Biol. Chem. 261, 5373–5377.

    PubMed  CAS  Google Scholar 

  14. Lee, T-c., Malone, B., and Snyder, F. (1988)J. Biol. Chem. 263, 1755–1760.

    PubMed  CAS  Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  16. Francescangeli, E., Porcellati, S., Horrocks, L.A., and Goracci, G., (1987)J. Liquid Chromat. 10, 2799–2808.

    CAS  Google Scholar 

  17. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  18. Braquet, P., Touqui, L., Shen, T.Y., and Vargaftig, B.B. (1987)Pharmacol. Rev. 39, 97–145.

    PubMed  CAS  Google Scholar 

  19. McCaman, R.E., and Cook, K. (1966)J. Biol. Chem. 241, 3390–3394.

    PubMed  CAS  Google Scholar 

  20. Binaglia, L., Goracci, G., Porcellati, G., Roberti, R., and Woelk, H., (1973)J. Neurochem. 21, 1067–1082.

    Article  PubMed  CAS  Google Scholar 

  21. Woodard, D.S., Lee, T-c., and Snyder, F. (1987)J. Biol. Chem. 262, 2520–2527.

    PubMed  CAS  Google Scholar 

  22. Reddy, T.S., and Horrocks, L.A. (1985)Neurochem. Res. 10, 1445–1452.

    PubMed  CAS  Google Scholar 

  23. Lenihan, D.J., and Lee, T-c. (1984)Biochem. Biophys. Res. Commun. 120, 834–839.

    Article  PubMed  CAS  Google Scholar 

  24. Freysz, L., Horrocks, L.A., and Mandel, P. (1980)J. Neurochem. 34, 963–969.

    Article  PubMed  CAS  Google Scholar 

  25. Radominska-Pyrek, A., Strosznajder, J., Dabrowiecki, Z., Goracci, G., Chojnacki, T., and Horrocks, L.A. (1977)J. Lipid Res. 18, 53–58.

    PubMed  CAS  Google Scholar 

  26. Clarke, N.G., and Dawson, R.M.C. (1981)Biochem. J. 195, 301–306.

    PubMed  CAS  Google Scholar 

  27. Albert, D.H., and Snyder, F. (1983)J. Biol. Chem. 258, 97–102.

    PubMed  CAS  Google Scholar 

  28. Woelk, H., Goracci, G., and Porcellati, G. (1974)Hoppe-Seyler's Z. Physiol. Chem. 355, 75–81.

    PubMed  CAS  Google Scholar 

  29. Woelk, H., Peiler-Ichikawa, K., Binaglia, L., Goracci, G., and Porcellati, G. (1974)Hoppe-Seyler's Z. Physiol. Chem. 355, 1535–1542.

    PubMed  CAS  Google Scholar 

  30. Woelk, H., Goracci, G., Gaiti, A., and Porcellati, G. (1973)Hoppe-Seyler's Z. Physiol. Chem. 354, 729–736.

    PubMed  CAS  Google Scholar 

  31. Porcellati, G., Biasion, M., and Arienti, G. (1970)Lipids 5, 725–733.

    Article  PubMed  CAS  Google Scholar 

  32. Bussolino, F., Pescarmona, G.P., Camussi, G., and Gremo, F. (1988)J. Neurochem. 51, 1755–1759.

    Article  PubMed  CAS  Google Scholar 

  33. Bazan, N.G., Birkle, D.L., Tang, W., and Reddy, T.S. (1976)Adv. Neurol. 44, 879–902.

    Google Scholar 

  34. Alonso, F., Garcia Gil, M., Sanchez-Crespo, M., and Mato, J.M. (1982)J. Biol. Chem. 257, 3376–3378.

    PubMed  CAS  Google Scholar 

  35. Ninio, E., Mencia-Huerta, J.M., and Benveniste, J. (1973)Biochim. Biophys. Acta 751, 298–304.

    Google Scholar 

  36. Blank, M.L., Lee, T-c., Fitzgerald, V., and Snyder, F. (1981)J. Biol. Chem. 256, 175–178.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Goracci, G., Francescangeli, E. Properties of PAF-synthesizing phosphocholinetransferase and evidence for lysoPAF acetyltransferase activity in rat brain. Lipids 26, 986–991 (1991). https://doi.org/10.1007/BF02536489

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536489

Keywords

Navigation