Skip to main content
Log in

Aspects related to mevalonate biosynthesis in plants

  • Plant and Fungal Sterols: Biosynthesis, Metabolism and Function Papers Presented at a Symposium Held at the AOCS Annual Meeting. Baltimore, MD, April 1990
  • Article
  • Published:
Lipids

Abstract

We purified and characterized a membrane-associated enzyme system from radish (Raphanus sativus L.) that is capable of converting acetyl-CoA into 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA). The enzyme system apparently comprises acetoacetyl-CoA thiolase (EC 2.3.1.9) and HMG-CoA synthase (EC 4.1.3.5). Its activityin vitro can be strongly stimulated by FeII. When ferrous ions are applied chelated with ethylenediaminetetraacetate, citrate or adenosine 5′-triphosphate (ATP), the stimulation is further increased. Stimulation is due to a higher catalytic efficiency as indicated by an increase in Vmax, whereas the affinity of the enzyme towards acetyl-CoA remains constant (Km=6 μM). A considerable portion of HMG-CoA lyase activity is associated with the same membranes. HMG-CoA lyase (EC 4.1.3.4) is also solubilized and partially co-purified. Its activity requires comparatively high concentrations of Mg2+. The conversion of HMG-CoA to mevalonic acid is catalyzed by HMG-CoA reductase (EC 1.1.1.34) that is associated with the same membranes. By cDNA encoding theArabidopsis HMG-CoA reductase, we isolated a corresponding gene from a cDNA library newly established from etiolated radish seedlings. This full-length cDNA, referred to as λcRS3, encodes a polypeptide of 583 amino acids with a molecular mass of about 63 kDa. The hydropathy profile suggests the presence of two hydrophobic membrane-spanning domains within the N-terminal 165 amino acids. The carboxy-terminal part, where the catalytic site resides, is highly conserved in all eukaryotic HMG-CoA reductase genes sequenced so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AACT:

acetoacetyl-CoA thiolase

ATP:

adenosine 5-triphosphate

Brij W-1:

polyoxyethylene ether Brij W-1

CoA:

coenzyme A

DTE:

dithioerythritol

EDTA:

ethylenediaminetetraacetate

FPLC:

fast-performance liquid chromatography

HMG-CoA:

3-hydroxy-3-methylglutaryl-coenzyme A

HMGL:

HMG-CoA lyase

HMGR:

HMG-CoA reductase

HMGS:

HMG-CoA synthase

HPLC:

high-performance liquid chromatography

MVA:

mevalonic acid

PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecylsulfate

References

  1. Bach, T.J. (1987)Plant Physiol. Biochem. 25, 163–178.

    CAS  Google Scholar 

  2. Gray, J.C. (1987)Adv. Bot. Res. 14, 25–91.

    CAS  Google Scholar 

  3. Bach, T.J., Motel, A., and Weber, T. (1990)Recent Advances in Phytochemistry (Towers, G.H.N., and Stafford, H., eds.) Vol. 24, pp. 1–82, Plenum Press, New York.

    Google Scholar 

  4. Sabine, J.R. (ed.) (1983)Monographs on Enzyme Biology: HMG-CoA Reductase, pp. 1–271, CRC Press, Boca Raton.

    Google Scholar 

  5. Chang, T.-Y. (1983) inEnzymes, Vol. 16, pp. 491–521, Academic Press, New York.

    Google Scholar 

  6. Brown, M.S., and Goldstein, J.L. (1986)Science 232, 34–47.

    Article  PubMed  CAS  Google Scholar 

  7. Alberts, A.W. (1988) inAtherosclerosis Reviews (Stokes III, J., and Mancini, M., eds.) Vol. 18, pp. 123–131, Raven Press, New York.

    Google Scholar 

  8. Hunninghake, D.B. (1988) inAtherosclerosis Reviews (Stokes III, J., and Mancini, M., eds.) Vol. 18, pp. 133–138, Raven Press, New York.

    Google Scholar 

  9. Davignon, J., Xhignesse, M., Mailloux, H., Nestruck, A.C., Lussier-Cacan, S., Roederer, G., and Pfister, P. (1988) inAtherosclerosis Reviews (Stokes III, J., and Mancini, M., eds.) Vol. 18, pp. 139–151, Raven Press, New York.

    Google Scholar 

  10. Bard, J.M., Luc, G., Douste-Blazy, P., Drouin, P., Ziegler, O., Jacotot, B., Emmerich, J., DeGennes, J.L., and Fruchart, J.C. (1988) inAtherosclerosis Reviews (Stokes III, J., and Mancini, M., eds.) Vol. 18, pp. 153–160, Raven Press, New York.

    Google Scholar 

  11. Illingworth, D.R., Bacon, S.P., and Larsen, K.K. (1988) inAtherosclerosis Reviews (Stokes III, J., and Mancini, M., eds.) Vol. 18, pp. 161–187, Raven Press, New York.

    Google Scholar 

  12. Walker, J.F., and Tobert, J.A. (1988) inAtherosclerosis Revies (Stokes III, J., and Mancini, M., eds.) Vol. 18, pp. 189–193, Raven Press, New York.

    Google Scholar 

  13. Brooker, J.D., and Russell, D.W. (1979)Arch. Biochem. Biophys. 198, 323–334.

    Article  PubMed  CAS  Google Scholar 

  14. Wong, R.J., McCormack, D.K., and Russell, D.W. (1982)Arch. Biochem. Biophys. 216, 631–638.

    Article  PubMed  CAS  Google Scholar 

  15. Bach, T.J., Retéy, J., and Lichtenthaler, H.K. (1982) inDevelopments in Plant Biology: Biogenesis and Function of Plant Lipids (Mazliak, P., Benveniste, P., Costes, C., and Douces, R., eds.) Vol. 6, pp. 355–362, Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  16. Bach, T.J., and Lichtenthaler, H.K. (1984)Biochim. Biophys. Acta 794, 152–161.

    PubMed  CAS  Google Scholar 

  17. Russell, D.W., and Davidson, H. (1982)Biochem. Biophys. Res. Commun. 104, 1537–1543.

    Article  PubMed  CAS  Google Scholar 

  18. Douglas, T.J., and Paleg, L.G. (1978)Phytochemistry 17, 713–718.

    Article  CAS  Google Scholar 

  19. Grumbach, K.H., and Bach, T.J. (1979)Z. Naturforsch. 34c, 941–943.

    CAS  Google Scholar 

  20. Suzuki, K., Uritani, I., and Oba, K. (1975)Physiol. Plant Pathol. 7, 265–276.

    CAS  Google Scholar 

  21. Oba, K., Kondo, K., Doke, N., and Uritani, I. (1985)Plant Cell Physiol. 26, 873–880.

    CAS  Google Scholar 

  22. Stermer, B.A., and Bostock, R.M. (1987)Plant Physiol. 84, 404–408.

    PubMed  CAS  Google Scholar 

  23. Chappell, J., and Nable, R. (1987)Plant Physiol. 85, 469–473.

    PubMed  CAS  Google Scholar 

  24. Vögeli, U., and Chappell, J. (1988)Plant Physiol. 88, 1291–1296.

    Article  PubMed  Google Scholar 

  25. Chappell, J., Von Lanken, C., Vögeli, U., and Bhatt, P. (1989)Plant Cell Reports 8, 48–52.

    Article  CAS  Google Scholar 

  26. Ito, R., Oba, K., and Uritani, I. (1979)Plant Cell Physiol. 20, 867–874.

    CAS  Google Scholar 

  27. Bach, T.J., Rogers, D.H., and Rudney, H. (1984) inDevelopments in Plant Biology: Structure, Function and Metabolism of Plant Lipids (Siegenthaler, P.A., and Eichenberger, W, eds.) Vol. 9, pp. 221–224, Elsevier Science Publishers, Amsterdam, New York, Oxford.

    Google Scholar 

  28. Bach, T.J., Rogers, D.H., and Rudney, H. (1986)Eur. J. Biochem. 154, 103–111.

    Article  PubMed  CAS  Google Scholar 

  29. Wititsuwannakul, R., Wititsuwannakul, D., and Suwanmanee, P. (1990)Phytochemistry 29, 1401–1403.

    Article  CAS  Google Scholar 

  30. Kondo, K., and Oba, K. (1986)J. Biochem. Tokyo 100, 967–974.

    PubMed  CAS  Google Scholar 

  31. Rogers, L.J., Shah, S.P.J., and Goodwin, T.W. (1966)Biochem. J. 104, 395–405.

    Google Scholar 

  32. Kleinig, H. (1989)Annu. Rev. Plant Physiol. 40, 39–59.

    Article  CAS  Google Scholar 

  33. Bach, T.J., and Lichtenthaler, H.K. (1983)Physiol. Plant. 59, 50–60.

    Article  CAS  Google Scholar 

  34. Bach, T.J., and Lichtenthaler, H.K. (1987) inAm. Chem. Soc. Symposium Series: Ecology and Metabolism of Plant Lipids (Fuller, G., and Nes, W.D., eds.) Vol. 325, pp. 109–139, American Chemical Society, Washington, D.C.

    Google Scholar 

  35. Schulze-Siebert, D., and Schultz, G. (1987)Plant. Physiol. Biochem. 25, 145–153.

    CAS  Google Scholar 

  36. Narita, J.O., and Gruissem, W. (1989)Plant Cell 1, 181–190.

    Article  PubMed  CAS  Google Scholar 

  37. Learned, R.M., and Fink, G.R. (1989)Proc. Natl. Acad. Sci. USA 86, 2799–2783.

    Article  Google Scholar 

  38. Caelles, C., Ferrer, A., Balcells, L., Hegardt, F.G., and Boronat, A., (1989)Plant Mol. Biol. 13, 627–638.

    Article  PubMed  CAS  Google Scholar 

  39. Wettstein, A., Caelles, C., Boronat, A., Jenke, H.-S., and Bach, T.J. (1989)Biol. Chem. Hoppe-Seyler 370, 806–807.

    Google Scholar 

  40. Monfar, M., Caelles, C., Balcells, L., Ferrer, A., Hegardt, F.G., and Boronat, A. (1990) inRecent Advances in Phytochemistry (Towers, G.H.N., and Stafford, H., eds.) Vol. 24, pp. 83–97, Plenum Press, New York.

    Google Scholar 

  41. Johnston, J.A., Racusen, D.W., and Bonner, J. (1954)Proc. Natl. Acad. Sci. USA 40, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  42. Klosterman, H.J., and Smith, F. (1954)J. Am. Chem. Soc. 76, 1229–1230.

    Article  CAS  Google Scholar 

  43. Lynen, F. (1967)Pure Appl. Chem. 14, 137–167.

    PubMed  CAS  Google Scholar 

  44. Oshima, K., and Uritani, I. (1968)J. Biochem. Tokyo 63, 203–212.

    Google Scholar 

  45. Potty, V.H. (1969)J. Food Sci. 34, 231–234.

    Article  CAS  Google Scholar 

  46. Ramachandra Reddy, A., and Das, V.S.R. (1987)New Phytol. 106, 457–464.

    Google Scholar 

  47. Curry, K.J. (1987)Amer. J. Bot. 74, 1332–1338.

    Article  CAS  Google Scholar 

  48. Bach, T.J., and Weber, T. (1989) inBiological Role of Plant Lipids (Biacs, P., Gruiz, K., and Kremmer, T., eds.) pp. 279–282. Akademiai Kiado, Budapest and Plenum Publishing Corporation, New York and London

    Google Scholar 

  49. Messner, B., Eggerer, H., Cornforth, J.W., and Mallaby, R. (1975)Eur. J. Biochem. 53, 255–264.

    Article  CAS  Google Scholar 

  50. Lynen, F., Henning, U., Bublitz, C., Sörbo, B., and Kröplin-Rueff, L. (1958)Biochem. Z. 330, 269–295.

    PubMed  CAS  Google Scholar 

  51. Clinkenbeard, K.D., Reed, W.D., Mooney, R.A., and Lane, M.D. (1975)J. Biol. Chem. 250, 2108–2116.

    Google Scholar 

  52. Hepper, C.M., and Audley, B.G. (1969)Biochem. J. 114, 379–386.

    PubMed  CAS  Google Scholar 

  53. Yu-Ito, R., Oba, K., and Uritani, I. (1982)Agric. Biol. Chem. 46, 2087–2091.

    CAS  Google Scholar 

  54. Skrukrud, C.L., Taylor, S.E., Hawkins, D.R., Nemethy, E.K., and Calvin, M. (1988)Physiol. Plant. 74, 306–316.

    Article  CAS  Google Scholar 

  55. Nemethy, E.K., Skrukrud, C.L., Piazza, G.J., and Calvin, M. (1983)Biochim. Biophys. Acta 760, 343–349.

    CAS  Google Scholar 

  56. Edmond, J., and Popják, G. (1974)J. Biol. Chem. 249, 66–71.

    PubMed  CAS  Google Scholar 

  57. Landau, B.R., and Brunengraber, H. (1985)Methods Enzymol. 110, 100–114.

    PubMed  CAS  Google Scholar 

  58. Nes, W.D., and Bach, T.J. (1985)Proc. Roy. Soc. Lond. B 225, 425–444.

    Article  CAS  Google Scholar 

  59. Sauvaire, Y., Tal, B., Heupel, R.C., England, R., Hanners, P.K., Nes, W.D., and Mudd, J.B. (1987) inThe Metabolism, Structure, and Function of Plant Lipids, (Stupf, P.K., Mudd, J.B., and Nes, W.D., eds.) pp. 107–110, Plenum Press, New York and London.

    Google Scholar 

  60. Ferrer, A., Aparicio, C., Nogués, N., Nogués, N., Wettstein, A., Bach, T.J., and Boronat, A. (1990)FEBS Lett. 266, 67–71.

    Article  PubMed  CAS  Google Scholar 

  61. Clinkenbeard, K.D., Suguyama, T., Reed, W.D., and Lane, M.D. (1975)J. Biol. Chem. 250, 3124–3135.

    CAS  Google Scholar 

  62. Hämmerlin, G., and Hoffmann, K.-H. (1989)Grundwissen Mathematik: Numerische Mathematik, Vol. 7, pp. 1–450, Springer-Verlag, Berlin.

    Google Scholar 

  63. Bensadoun, A., and Weinstein, D. (1976)Anal. Biochem. 70, 241–250.

    Article  PubMed  CAS  Google Scholar 

  64. Dean, C., Elzen, P., Tamaki, S., Dunsmuir, P., and Bedbrook, J. (1985)EMBO J. 5, 3055–3061.

    Google Scholar 

  65. Aviv, H., and Leder, P. (1972)Proc. Natl. Acad. Sci. USA 69, 1408–1412.

    Article  PubMed  CAS  Google Scholar 

  66. Gubler, U., and Hoffman, B. (1983)Gene, 25, 263–269.

    Article  PubMed  CAS  Google Scholar 

  67. Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982)Molecular Cloning: A Laboratory Manual, pp. 1–545, Cold spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  68. Sanger, F., Nicklen, S., and Coulson, A.R. (1977)Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  69. Biggin, M.D., Gibson, T.J., and Hong, J.F. (1983)Proc. Natl. Acad. Sci. USA 80, 3963–3965.

    Article  PubMed  CAS  Google Scholar 

  70. Kyte, J., and Doolitte, R.F. (1982)J. Mol. Biol. 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  71. Weber, T., Motel, A., and Bach, T.J. (1989)Biol. Chem. Hoppe-Seyler 370, 806.

    Google Scholar 

  72. Bienfait, H.F. (1989)Acta Bot. Neerl. 38, 105–129.

    CAS  Google Scholar 

  73. Harder, J., and Follmann, H. (1987)FEBS Lett. 222, 171–174.

    Article  CAS  Google Scholar 

  74. Merril, C.R., Goldman, D., and Van Keuren, M.L. (1984)Methods Enzymol. 104, 441–447.

    PubMed  CAS  Google Scholar 

  75. Rogers, S., Wells, R., and Rechsteiner, M. (1986)Science 234, 364–368.

    Article  PubMed  CAS  Google Scholar 

  76. Chin, D.J., Gil, G., Russell, D.W., Liscum, L., Luskey, K.L., Basu, S.K., Okayama, H., Berg, P., Berg, P., Goldstein, J.L., and Brown, M.S. (1984)Nature 308, 364–368.

    Article  Google Scholar 

  77. Luskey, K.L., and Stevens, B. (1985)J. Biol. Chem. 260, 10271–10277.

    PubMed  CAS  Google Scholar 

  78. Liscum, L., Finer-Moore, J., Stroud, R.M., Luskey, K.L., Brown, M.S., and Goldstein, J.L. (1985)J. Biol. Chem. 260, 522–530.

    PubMed  CAS  Google Scholar 

  79. Basson, M.E., Thorsness, M., and Rine, J. (1985)Proc. Natl. Acad. Sci. USA 83, 5563–5567.

    Article  Google Scholar 

  80. Gertler, F.B., Chiu, C.-Y., Richter-Mann, L., and Chin, D.J. (1988)Mol. Cell Biol. 8, 2713–2731.

    PubMed  CAS  Google Scholar 

  81. Woodward, H.D., Allen, J.M.C., and Lennarz, W.L. (1988)J. Biol. Chem. 263, 18411–18418.

    PubMed  CAS  Google Scholar 

  82. Rajkovic, A., Simonsen, J.N., Davis, R.E., and Rottman, F.M. (1989)Proc. Natl. Acad. Sci. USA 86, 8217–8221.

    Article  PubMed  CAS  Google Scholar 

  83. Bach, T.J. (1986)Lipids 21, 82–88.

    Article  PubMed  CAS  Google Scholar 

  84. Balasubramaniam, S., Goldstein, J.L., and Brown, M.S. (1977)Proc. Natl. Acad. Sci. USA 74, 1421–1425.

    Article  PubMed  CAS  Google Scholar 

  85. Shah, S.H. (1982)Neurochem. Res. 7, 1359–1366.

    Article  PubMed  CAS  Google Scholar 

  86. Schnitzler-Polokoff, R., Torget, R., Logel, J., and Sinensky, M. (1983)Arch. Biochem. Biophys. 227, 71–80.

    Article  Google Scholar 

  87. Mehrabian, M., Callaway, K.A., Clarke, C.F., Tanaka, R.D., Greenspan, M., Lusis, A.J., Sparkes, R.S., Mohandas, T., Edmond, J.E., Fogelman, A.M., and Edwards, P.A. (1986)J. Biol. Chem. 261, 16249–16255.

    PubMed  CAS  Google Scholar 

  88. Maltese, W.A., and Sheridan, K.M. (1988)J. Biol. Chem. 263, 10104–10110.

    PubMed  CAS  Google Scholar 

  89. Rosser, D.S.E., Ashby, M.N., Ellis, J., and Edwards, P.A. (1989)J. Biol. Chem. 264, 12653–12656.

    PubMed  CAS  Google Scholar 

  90. Gil, G., Brown, M.S., and Goldstein, J.L. (1986)J. Biol. Chem. 261, 3717–3724.

    PubMed  CAS  Google Scholar 

  91. Smith, J.R., Osborne, T.F., Brown, M.S., Goldstein, J.L., and Gil, G. (1988)J. Biol. Chem. 263, 18480–18487.

    PubMed  CAS  Google Scholar 

  92. Gil, G., Osborne, T.F., Goldstein, J.L., and Brown, M.S. (1988)J. Biol. Chem. 263, 19009–19019.

    PubMed  CAS  Google Scholar 

  93. Tomoda, H., Kumagai, H., Tanaka, H., and Omura, S. (1987)Biochim. Biophys. Acta 922, 351–356.

    PubMed  CAS  Google Scholar 

  94. Greenspan, M.D., Yudkovitz, J.B., Lo, C.-Y.L., Chen, J.S., Alberts, A.W., Hunt, V.M., Chang, M.N., Yang, S.S., Thompson, K.L., Chiang, Y.-C.P., Chabala, J.C., Monaghan, R.L., and Schwartz, R.L., (1987)Proc. Natl. Acad. Sci. USA 84, 7488–7482.

    Article  PubMed  CAS  Google Scholar 

  95. Bachhawat, B.K., Robinson, W.G., and Coon, M.J. (1955)J. Biol. Chem. 216, 727–736.

    PubMed  CAS  Google Scholar 

  96. Stegink, L.D., and Coon, M.J. (1968)J. Biol. Chem. 243, 5272–5279.

    PubMed  CAS  Google Scholar 

  97. Higgins, M.J.P., Kornblatt, J.A., and Rudney, H. (1972)The Enzymes VII, 407–434.

    Article  Google Scholar 

  98. Michel, H., and Deisenhofer, J. (1988)Biochemistry 27, 1–7.

    Article  CAS  Google Scholar 

  99. Oizumi, J., and Hayakawa, K. (1989)BioFactors 2, 127–129.

    PubMed  CAS  Google Scholar 

  100. Johnson, E.A., Levine, R.L., and Lin, E.C.C. (1985)J. Bacteriol. 164, 479–483.

    PubMed  CAS  Google Scholar 

  101. Rush, J.D., Maskos, Z., Koppenol, W.H. (1990)FEBS Lett. 261, 121–123.

    Article  CAS  Google Scholar 

  102. Mitraki, A., and King, J. (1989)Bio/Technology 7, 690–697.

    Article  CAS  Google Scholar 

  103. Gil, G., Faust, J.R., Chin, D.J., Goldstein, J.L., and Brown, M.S. (1985)Cell 41, 249–258.

    Article  PubMed  CAS  Google Scholar 

  104. Skalnik, D.G., Narita, H., Kent, C., and Simoni, R.D. (1988)J. Biol. Chem. 263, 6836–6841.

    PubMed  CAS  Google Scholar 

  105. Wright, R., Basson, M., D'Ari, L., and Rine, J. (1988)J. Cell Biol. 107, 101–114.

    Article  PubMed  CAS  Google Scholar 

  106. Burden, R.S., Cooke, D.T., and Carter, G.A. (1989)Phytochemistry 28, 1791–1804.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bach, T.J., Boronat, A., Caelles, C. et al. Aspects related to mevalonate biosynthesis in plants. Lipids 26, 637–648 (1991). https://doi.org/10.1007/BF02536429

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536429

Keywords

Navigation