Skip to main content
Log in

Comparison of linoleic acid and eicosapentaenoic acid incorporation into human breast cancer cells

  • Article
  • Published:
Lipids

Abstract

To gain some insight into the mechanisms involved in the opposing effects of linoleic acid (LA) and eicosapentaenoic acid (EPA) on the growth and invasiveness of MDA-MB-435 human breast cancer cells, the dynamics of the uptake by cells and the incorporation of [14C]LA and [14C]EPA into major lipid and phospholipid pools, as well as the effects of unlabeled EPA or LA on the uptake and distribution of [14C]LA or [14C]EPA, respectively, were examined. Cells were exposed to [14C]LA (1.28 μg/mL) or [14C]EPA (1.0 μg/mL) and unlabeled EPA or LA, respectively, at 0, 1, 4 and 16 μg/mL for 24 h in serum-free media. The uptake of each fatty acid (FA) was linear over time and was not affected by the presence of the opposing FA. For both FA, 80–90% was incorporated into the phospholipid fraction with the remaining 10–20% in neutral lipids. The relative distribution profile of [14C]LA among the phospholipid classes indicated a preferential incorporation into phosphatidylcholine (65%), whereas [14C]EPA was mostly found in phosphatidylethanolamine (58%). In the presence of unlabeled EPA or LA at various concentrations, corresponding dose-dependent shifts of [14C]LA or [14C]EPA from the phospholipid to the neutral lipid pool were noted, which did not alter the relative distribution of the FA among the phospholipid classes. Exogenous exposure to EPA or LA increased its content in membrane phospholipids while concurrently decreasing LA or EPA content, respectively, in a dose-dependent manner. Arachidonic acid content of membrane phospholipids remained constant. The divergent distribution profiles of LA and EPA within the phospholipid compartment provides some insight into the mechanisms of their opposing effects on MDA-MB-435 cell growth and invasiveness. Also, the effects of LA and EPA on the uptake and distribution of their opposing FA shed some light on the mechanisms mediating their competitive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

ANOVA:

analysis of variance

BSA:

bovine serum albumin

DHA:

docosahexaenoic acid

EPA:

eicosapentaenoic acid

FA:

fatty acid(s)

FBS:

fetal bovine serum

HETE:

hydroxyeicosatetraenoic acid

IMDM:

Iscove's modified Dulbecco's medium

LA:

linoleic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PLA2 :

phospholipase A2

PS:

phosphatidylserine

TLC:

thin-layer chromatography

References

  1. Carroll, K.K. (1975)Cancer Res. 35, 3374–3383.

    CAS  PubMed  Google Scholar 

  2. Cohen, L.A., Thompson, D.O., Choi, K., Blank, M.E., and Rose, D.P. (1986)J. Natl. Cancer. Inst. 77, 33–42.

    CAS  PubMed  Google Scholar 

  3. Jurkowski, J.J., and Cave, Jr., W.T. (1985)J. Natl. Cancer Inst. 74, 1145–1150.

    CAS  PubMed  Google Scholar 

  4. Abou-El-Ela, S.H., Prasse, K.W., Farrell, R.L., Carroll, R.W., Wade, A.S., and Bunce, O.R. (1989)Cancer Res. 49, 1434–1440.

    CAS  PubMed  Google Scholar 

  5. Rao, G.A., and Abraham, S. (1977)J. Natl. Cancer Inst. 58, 445–447.

    Article  CAS  PubMed  Google Scholar 

  6. Abraham, S., and Hillyard, L.A. (1983)J. Natl. Cancer Inst. 71, 601–605.

    CAS  PubMed  Google Scholar 

  7. Karmali, R.A., Marsh, J., and Fuchs, C. (1984)J. Natl. Cancer Inst. 73, 457–461.

    Article  CAS  PubMed  Google Scholar 

  8. Gabor, H., and Abraham, S. (1986)J. Natl. Cancer Inst. 76, 1223–1229.

    CAS  PubMed  Google Scholar 

  9. Rose, D.P., and Connolly, J.M. (1989)Biochem. Biophys. Res. Commun. 64, 277–283.

    Article  Google Scholar 

  10. Rose, D.P., and Connolly, J.M. (1990)Cancer Res. 50, 7139–7144.

    CAS  PubMed  Google Scholar 

  11. Connolly, J.M., and Rose, D.P. (1993)Cancer Lett. 75, 137–142.

    Article  CAS  PubMed  Google Scholar 

  12. Connolly, J.M., and Rose, D.P. (1994)Proc. Assoc. Cancer Res. 35, 52.

    Google Scholar 

  13. Rose, D.P., Connolly, J.M., and Meschter, C.L. (1991)J. Natl. Cancer Inst. 83, 1491–1495.

    Article  CAS  PubMed  Google Scholar 

  14. Rose, D.P., Hatala, M.A., Connolly, J.M., and Rayburn, J.M. (1993)J. Cancer Res. 53, 4686–4690.

    CAS  Google Scholar 

  15. Rose, D.P., and Connolly, J.M. (1993)J. Natl. Cancer Inst. 85, 1743–1747.

    Article  CAS  PubMed  Google Scholar 

  16. Ashendel, C.L. (1992) inCellular and Molecular Targets for Chemoprevention (Steele, V.E., Stoner, G.D., Boone, C.W., and Kelloff, G.J., eds.) pp. 19–41, CRC Press, Boca Raton.

    Google Scholar 

  17. Cullis, P.R., and Hope, M.J. (1985) inBiochemistry of Lipids and Membranes (Vance, D.E., and Vance, J.E., eds.) pp. 25–30, Benjamin/Cummings Publishing Co., Menlo Park.

    Google Scholar 

  18. Burns, C.P., and Spector, A.A. (1990)Nutr. Rev. 48, 233–240.

    Article  CAS  PubMed  Google Scholar 

  19. Leger, C.L. (1993)Prostaglandins Leukot. Essent. Fatty Acids 48, 17–21.

    Article  CAS  PubMed  Google Scholar 

  20. Price, J.E., Polyzos, A., Zhang, R.D., and Daniels, L.M. (1990)Cancer Res. 50, 717–721.

    CAS  PubMed  Google Scholar 

  21. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  22. Leyton, J., Lee, M.L., Locniskar, M., Belury, M.A., Slaga, T.G., Bechtel, D., and Fischer, S.M. (1991)Cancer Res. 51, 907–915.

    CAS  PubMed  Google Scholar 

  23. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    CAS  PubMed  Google Scholar 

  24. Lepage, G., and Roy, C.C. (1986)J. Lipid Res. 27, 114–120.

    CAS  PubMed  Google Scholar 

  25. Cook, H.W., Clarke, J.T.R., and Spence, M.W. (1983)J. Biol. Chem. 258, 7586–7591.

    CAS  PubMed  Google Scholar 

  26. Miller, M., Motevalli, M., Westphal, D., and Kwiterovich, Jr. P.O. (1993)Lipids 28, 1–5.

    Article  CAS  PubMed  Google Scholar 

  27. Marcelo, C.L., and Dunham, W.R. (1993)J. Lipid Res. 34, 2077–2090.

    CAS  PubMed  Google Scholar 

  28. Takahashi, R., Begin, M.E., Ells, G., and Horrobin, D.F. (1991)Prostaglandins Leukot. Essent. Fatty Acids 42, 113–117.

    Article  CAS  PubMed  Google Scholar 

  29. Pazouki, S., Baty, J.D., Wallace, H.M., and Coleman, C.S. (1992)Lipids 27, 827–834.

    Article  CAS  PubMed  Google Scholar 

  30. Gaspar, G., de Alaniz, M.J.T., and Brenner, R.R. (1975)Lipids 10, 726–731.

    Article  CAS  PubMed  Google Scholar 

  31. Hubbard, N.E., and Erickson, K.L. (1987)Cancer Res. 47, 6171–6175.

    CAS  PubMed  Google Scholar 

  32. Rose, D.P., Rayburn, J., Hatala, M.A., and Connolly, J.M. (1994)Nutr. Cancer 22, 131–141.

    Article  CAS  PubMed  Google Scholar 

  33. Spector, A.A., and Yorek, M.A. (1985)J. Lipid Res. 26, 1015–1035.

    CAS  PubMed  Google Scholar 

  34. Spector, A.A., and Burns, C.P. (1987)Cancer Res. 57, 4529–4537.

    Google Scholar 

  35. Cave, Jr., W.T., and Erickson-Lucas, M.J. (1982)J. Natl. Cancer Inst. 68, 319–324.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hatala, M.A., Rayburn, J. & Rose, D.P. Comparison of linoleic acid and eicosapentaenoic acid incorporation into human breast cancer cells. Lipids 29, 831–837 (1994). https://doi.org/10.1007/BF02536250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536250

Keywords

Navigation