Skip to main content
Log in

Dietary manipulation of macrophage phospholipid classes: Selective increase of dihomogammalinolenic acid

  • Published:
Lipids

Abstract

Because alterations in the dietary content of fatty acids are an important method for modulating macrophage eicosanoid production, we have quantitated the levels of n−6 and n−3 polyunsaturated fatty acids in peritoneal macrophage individual phospholipids from mice fed diets (3 wk) with either safflower oil (SAF), predominantly containing 18∶2n−6, borage (BOR) containing 18∶2n−6 and 18∶3n−6, fish (MFO) containing 20∶5n−3 and 22∶6n−3, and borage/fish mixture (MIX) containing 18∶2n−6, 18∶3n−6, 20∶5n−3 and 22∶6n−3. Dietary n−3 fattya cids were readily incorporated into macrophage phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). The increase in n−3 fatty acid levels was accompanied by a decrease in the absolute levels of 18∶2n−6, 20∶4n−6 and 22∶4n−6 in PC, PE and PS. Interestingly, PI 20∶4n−6 levels were not significantly lowered (P>0.05) in MIX and MFO macrophages relative to SAF and BOR. These data demonstrate the unique ability of this phospholipid to selectively maintain its 20∶4n−6 levels. In BOR and MIX animals, 20∶3n−6 levels were significantly increased (P<0.05) in all phospholipids relative to SAF and MFO. The combination of borage and fish oils (MIX diet) produced the highest 20∶3n−6/20∶4n−6 ratio in all phospholipids. These data show that the macrophage eicosanoid precursor levels of 20∶3n−6, 20∶4n−6 and n−3 acids can be selectively manipulated through the use of specific dietary regimens. This is noteworthy because an increase in phospholipid levels of 20∶3n−6 and 20∶5n−3, while concomitantly reducing 20∶4n−6, may have therapeutic potential in treating inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BOR:

borage

FAME:

fatty acid methyl esters

MFO:

fish

MIX:

borage/fish mixture

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

SAF:

safflower oil

TLC:

thin layer chromatography

References

  1. Somers, S.D., Johnson, W.J., and Adams, D.O. (1986) inCancer Immunology: Innovative Approaches to Therapy (Herberman, R., ed.) pp. 69–122, Martinus Nijhoff, Boston, MA.

    Google Scholar 

  2. Stenson, W.F., and Parker, C.W. (1980)J. Immunol. 125, 1–6.

    PubMed  CAS  Google Scholar 

  3. Schultz, R.M., Parlidis, N.A., Stylos, W.A., and Chirigos, M.A. (1979)Science 202, 320–321.

    Article  Google Scholar 

  4. Snyder, D.S., Beller, D.I., and Unanue, E. (1982)Nature London 299, 163–165.

    Article  PubMed  CAS  Google Scholar 

  5. Taffet, S.M., and Russell, S.W. (1981)J. Immunol. 126, 424–427.

    PubMed  CAS  Google Scholar 

  6. Schnyder, J., Dewald, B., and Baggiolini, M. (1981)Prostaglandins 22, 411–421.

    Article  PubMed  CAS  Google Scholar 

  7. Mathias, M.M., and Dupont, J. (1985)Lipids 20, 791–801.

    Article  PubMed  CAS  Google Scholar 

  8. Willis, A.L. (1981)Nutr. Rev. 39, 289–301.

    Article  PubMed  CAS  Google Scholar 

  9. Chapkin, R.S., Somers, S.D., Schumacher, L., and Erickson, K.L. (1988)Lipids 23, 380–383.

    Article  PubMed  CAS  Google Scholar 

  10. Terano, T., Salmon, J.A., Higgs, G.A., and Moncada, S. (1986)Biochem. Pharmacol. 35, 779–785.

    Article  PubMed  CAS  Google Scholar 

  11. Kunkel, S.L., Ogawa, H., Ward, P.A., and Zurier, R.B. (1981)Prog. Lipid Res. 20, 885–889.

    Article  PubMed  CAS  Google Scholar 

  12. Horrobin, D.F. (1983)Rev. Pure Appl. Sci. 4, 339–383.

    CAS  Google Scholar 

  13. Brown, M.L., Jakubowski, J.A., Leventis, L.L., and Deykin, D. (1987)Biochim. Biophys. Acta 921, 159–166.

    PubMed  CAS  Google Scholar 

  14. Mahadevappa, V.G., and Holub, B.J. (1987)J. Lipid Res. 28, 1275–1280.

    PubMed  CAS  Google Scholar 

  15. Meltzer, M.S. (1976)Cell Immunol. 75, 176–186.

    Article  Google Scholar 

  16. Erickson, K.L., Schlanger, D.S., Adams, D.A., Fregeau, D.R., and Stern, J.S. (1984)J. Nutr. 114, 1834–1842.

    PubMed  CAS  Google Scholar 

  17. National Research Council (1978) inNutrient Requirements of Laboratory Animals, Vol. 10, pp. 38–53, National Academy of Sciences, Washington, D.C.

    Google Scholar 

  18. Chapkin, R.S., Somers, S.D., and Erickson, K.L. (1988)J. Immunol. 140, 2350–2355.

    PubMed  CAS  Google Scholar 

  19. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 22, 497–509.

    Google Scholar 

  20. Holub, B.J., and Skeaff, C.M. (1987)Meth. Enzymol. 141, 234–244.

    Article  PubMed  CAS  Google Scholar 

  21. Chapkin, R.S., Haberstroh, B., Liu, T., and Holub, B.J. (1983)J. Lab. Clin. Med. 101, 726–735.

    PubMed  CAS  Google Scholar 

  22. Chapkin, R.S., Ziboh, V.A., Marcelo, C.L., and Voorhees, J.J. (1986)J. Lipid Res. 27, 945–954.

    PubMed  CAS  Google Scholar 

  23. Schmidt, G., Martin, A.P., Stuhlman, R.A., Townsend, J.F., Lucas, F.V., and Vorbeck, M.L. (1984)Lab. Invest. 30, 451–457.

    Google Scholar 

  24. Chapkin, R.S., Miller, C.C., Somers, S.D., and Erickson, K.L. (1988)Biochim. Biophys. Acta 959, 322–331.

    PubMed  CAS  Google Scholar 

  25. Lokesh, B.R., Hsieh, H.L., and Kinsella, J.E. (1986)J. Nutr. 116, 2547–2552.

    PubMed  CAS  Google Scholar 

  26. Magrum, L.J., and Johnston, P.V. (1983)Lipids 18, 514–521.

    Article  PubMed  CAS  Google Scholar 

  27. Chensue, S.W., and Kunkel, S.L. (1983)Clinics Lab. Med. 3, 677–694.

    CAS  Google Scholar 

  28. Kernoff, P.B.A., Willis, A.L., Stone, K.J., Davies, J.A., and McNicol, G.P. (1977)Br. Med. J. 2, 1441–1444.

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi, R., Nassar, B.A., Huang, Y.S., Begin, M.E., and Horrobin, D.F. (1987)Throm. Res. 47, 135–146.

    Article  CAS  Google Scholar 

  30. Juan, H., and Sametz, W. (1985)Naunyn-Schmied. Arch. Pharmacol. 329, 388–393.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chapkin, R.S., Somers, S.D. & Erickson, K.L. Dietary manipulation of macrophage phospholipid classes: Selective increase of dihomogammalinolenic acid. Lipids 23, 766–770 (1988). https://doi.org/10.1007/BF02536219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536219

Keywords

Navigation