Skip to main content
Log in

Biosynthesis of membrane cholesterol during peripheral nerve development, degeneration and regeneration

  • Published:
Lipids

Abstract

Biosynthesis of peripheral nerve cholesterol was investigated by the in vivo and in vitro incorporation of [1-14C]-acetate into sciatic endoneurium of normal rats during development, degeneration and regeneration. Labeled sterols were rapidly formed (<10 min) within the endoneurial portion of sciatic nerve after [1-14C]acetate administration by intraneural injection. The majority of labeled sterols were initially found in lanosterol and desmosterol. After six hr, the14C-labeling in both precursors was decreased to minimum, whereas cholesterol became the major labeled product of sterol. As myelination proceeded, the incorporation of [1-14C]acetate into endoneurial cholesterol decreased rapidly and reached a minimum after six no. In mature adult nerve, an increased proportion of biosynthesis of lanosterol and desmosterol also was demonstrated. The in vitro incorporation of [1-14C]acetate into cholesterol was inhibited during Wallerian degeneration. Instead, cholesteryl esters were labeled as the major sterol product. Such inhibition, however, was not observed in the adult Trembler nerve (Brain Res. 325, 21–27, 1985), which is presumed to be due to a primary metabolic disorder of Schwann cells. The cholesterol biosynthesis was gradually resumed in degenerated nerve by either regeneration of crush-injured nerve or reattachment of the transected nerve. These results suggest that cholesterol biosynthesis in peripheral nerve relies on the axon to provide necessary substrates. De novo synthesis appears to be one of the major sources of endoneurial cholesterol that forms and maintains peripheral nerve myelin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C:

cholesterol

Ca:

ceramide

CE:

cholesteryl ester

Cs:

coprostanol

Ds:

desmosterol

1,2-DG:

1,2-diacylglycerol

1,3-DG:

1,3-diacylglycerol

FAME:

fatty acid methyl ester

FFA:

free fatty acid

GL:

glycolipids

Ls:

lanosterol

MG:

monoacylglycerol

PL:

phospholipids

TG:

triacylglycerol

HPTLC:

high-performance thin-layer chromatography

O:

origin

S:

std, standards

SF:

solvent front

TLC:

thin-layer chromatography

References

  1. Chen, H.W., Kandutsch, A.A., and Heiniger, H.J. (1978)Prog. Exp. Tumor Res. 22, 275–316.

    PubMed  CAS  Google Scholar 

  2. Coleman, P.S., and Lavietes, B.B. (1981)CRC Crit. Rev. Biochem. 11, 341–393.

    PubMed  CAS  Google Scholar 

  3. Volpe, J.J., and Obert, K.A. (1983)J. Neurochem. 40, 530–537.

    Article  PubMed  CAS  Google Scholar 

  4. Yao, J.K., and Cannon, K.P. (1983)Biochim. Biophys. Acta 753, 331–338.

    PubMed  CAS  Google Scholar 

  5. Rawlins, F.A., and Smith, M.E. (1971)Neurobiology 1, 225–231.

    CAS  Google Scholar 

  6. Rawlins, F.A., Hedley-Whyte, E.T., Villegas, G., and Uzman, B.G. (1970)Lab. Invest. 22, 237–240.

    PubMed  CAS  Google Scholar 

  7. Rawlins, F.A., Villegas, G.M., Hedley-Whyte, E.T., and Uzman, B.G. (1972)J. Cell. Biol. 52, 615–625.

    Article  PubMed  CAS  Google Scholar 

  8. Rawlins, F.A., and Uzman, B.G. (1970)Lab. Invest. 23, 184–189.

    PubMed  CAS  Google Scholar 

  9. Spady, D.K., and Dietschy, J.M. (1983)J. Lipid Res. 24, 303–315.

    PubMed  CAS  Google Scholar 

  10. Anderson, J.M., and Dietschy, J.M. (1979)J. Lipid Res. 20, 740–752.

    Google Scholar 

  11. Turley, S.D., Andersen, J.M., and Dietschy, J.M. (1981)J. Lipid Res. 22, 551–569.

    PubMed  CAS  Google Scholar 

  12. Heacock, A.M., Klinger, P.D., Seguin, E.B., and Agranoff, B.W. (1984)J. Neurochem. 42, 987–993.

    PubMed  CAS  Google Scholar 

  13. Yao, J.K. (1985)J. Neurochem. 45, 589–595.

    Article  PubMed  CAS  Google Scholar 

  14. Yao, J.K., Natarajan, V., and Dyck, P.J. (1980)J. Neurochem. 35, 933–940.

    Article  PubMed  CAS  Google Scholar 

  15. Dyck, P.J., Lais, A.C., Sparks, M.F., Oviatt, K.F., Hexum, L.A., and Steinmuller, D. (1979)Neurology 29, 1215–1221.

    PubMed  CAS  Google Scholar 

  16. Plesure, D.E., and Towfighi, J. (1972)Arch. Neurol. 29, 1215–1221.

    Google Scholar 

  17. Yao, J.K., and Rastetter, G.M. (1985)Anal. Biochem. 150, 111–116.

    Article  PubMed  CAS  Google Scholar 

  18. Morrison, W.R., and Smith, L.M. (1964)J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  19. Yao, J., and Bourre, J.M. (1985)Brain Res. 325, 21–27.

    Article  PubMed  CAS  Google Scholar 

  20. Gaylor, J.L. (1972)Adv. Lipid Res. 10, 89–141.

    PubMed  CAS  Google Scholar 

  21. Bourre, J.M., Clement, M., Gerard, D., and Chaudiere, J. (1988)Trans. Am. Soc. Neurochem. 19, 225.

    Google Scholar 

  22. Smith, M.E. (1969)J. Neurochem. 26, 83–92.

    Article  Google Scholar 

  23. Rawlins, F.A., and Smith, M.E. (1971)J. Neurochem. 18, 1861–1870.

    Article  PubMed  CAS  Google Scholar 

  24. Stillway, L.W., Weigand, D.A., and Buse, M.G. (1979)Lipids 14, 127–131.

    Article  PubMed  CAS  Google Scholar 

  25. Edmond, J. (1974)J. Biol. Chem. 249, 72–80.

    PubMed  CAS  Google Scholar 

  26. Yeh, Y-Y., Slreuli, V.L., and Zee, P. (1977)Lipids 12, 957–964.

    Article  PubMed  CAS  Google Scholar 

  27. Koper, J.W., Lopes-Cardozo, M., and van Golde, L.M.G. (1981)Biochim. Biophys. Acta 666, 411–417.

    PubMed  CAS  Google Scholar 

  28. Yao, J.K. (1983)J. Neurochem. 41 (Suppl.), 5154.

    Google Scholar 

  29. Low, P.A. (1976)J. Neurol. Sci. 30, 327–341.

    Article  PubMed  CAS  Google Scholar 

  30. Low, P.A. (1976)J. Neurol. Sci. 30, 343–368.

    Article  PubMed  CAS  Google Scholar 

  31. Yao, J.K. (1984) inPeripheral Neuropathy (Dyck, P.J., Thomas, P.K., Lambert, E.H., and Bunge, R., eds.), 2nd edn., pp. 510–530, W.B. Saunders Co., Philadelphia, PA.

    Google Scholar 

  32. Yao, J.K., and Dyck, P.J. (1981)J. Neurochem. 37, 156–163.

    Article  PubMed  CAS  Google Scholar 

  33. Mezei, C. (1970)J. Neurochem. 17, 1163–1170.

    Article  PubMed  CAS  Google Scholar 

  34. Bowen, D.M., Davison, A.N., and Ramsey, R.B. (1974) inBiochemistry of Lipids (Goodwin, T.W., ed.) Vol. 4, pp. 141–179, University Park Press, Baltimore, MD.

    Google Scholar 

  35. Svanberg, O. (1970)Acta Physiol. Scand. 80, 45–49.

    Article  PubMed  CAS  Google Scholar 

  36. McGregor, A., Jeffrey, P.L., Klingman, J.D., and Austin, L. (1973)Brain Res. 63, 466–469.

    Article  PubMed  CAS  Google Scholar 

  37. Wood, P.L., and Boegman, R.J. (1980)FEBS Lett. 115, 110–112.

    Article  PubMed  CAS  Google Scholar 

  38. Toews, A.D., Saunders, B.F., Blaker, W.D., and Morell, P. (1983)J. Neurochem. 40, 555–562.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Yao, J.K. Biosynthesis of membrane cholesterol during peripheral nerve development, degeneration and regeneration. Lipids 23, 857–862 (1988). https://doi.org/10.1007/BF02536205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536205

Keywords

Navigation