Skip to main content
Log in

α-tocopherol oxidation mediated by superoxide anion (O 2 ) I. Reactions in aprotic and protic conditions

  • Article
  • Published:
Lipids

Abstract

The reaction of α-tocopherol (α-T) with superoxide anion (O 2 ) in both dry acetonitrile and in aqueous acetonitrile solution is described. The O 2 was generated by the electrochemical reduction of molecular oxygen in acetonitrile, using tetrabutylammonium bromide as an electrolyte. α-T was reacted with O 2 either in dry acetonitrile or in a 10% aqueous acetonitrile solution. In dry acetonitrile, α-T was oxidized to a very unstable primary intermediate, which was further oxidized to a secondary, more stable intermediate. The formation of the secondary intermediate depended upon the presence of molecular oxygen. This intermediate readily converted into two compounds in equimolar amounts (designated A and B). The primary, very unstable intermediate was readily reduced again to α-T by treatment with LiAlH4 or ascorbic acid. However, the secondary intermediate or the stable oxidation products could not be reduced to α-T. In the 10% aqueous acetonitrile, α-T was oxidized to α-tocopheryl quinone, α-tocopherol dimer and α-tocopherol dihydroxy dimer, and an unknown compound. In the aqueous medium, no intermediates were formed by the action of O 2 . The results of this study indicate that the reaction of α-T with O 2 under aprotic conditions is different from that observed under protic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-T:

α-tocopherol

D:

α-T dimer

DHD:

α-T dihydroxy dimer

HPLC:

high-performance liquid chromatography

O 2 :

superoxide anion

O.D.:

optical density

TBAB:

tetrabutylammonium bromide

TQ:

α-tocopheryl quinone

References

  1. Babior, B.M. (1982)Can. J. Physiol. Pharmacol. 60, 1353–1358.

    PubMed  CAS  Google Scholar 

  2. Korycka-Dahl, M., and Richardson, T. (1980)J. Dairy Sci. 63, 1181–1198.

    Article  PubMed  CAS  Google Scholar 

  3. Boyer, P.D. (1951)J. Am. Chem. Soc. 73, 733–735.

    Article  CAS  Google Scholar 

  4. Gotoh, T., and Shikama, K., (1976)J. Biochem. 80, 397–399.

    PubMed  CAS  Google Scholar 

  5. Fee, J.A. (1980) inBiological and Clinical Aspects of Superoxide and Superoxide Dismutase (Bannister, W.H., and Bannister, J.V., eds.) pp. 41–48, Elsevier/North Holland, Inc., New York.

    Google Scholar 

  6. Matsuo, M., Matsumoto, S., and Iitaka, Y. (1981),Tetrahedron Lett., 3649–3652.

  7. Matsuo, M., Matsumoto, S., Iitaka, Y., Hanaki, A., and Ozawa, T. (1979),J.C.S. Chem. Commun., 105–106.

  8. Nanni, E.J., Stallings, M.D., and Sawyer, D.T., (1980)J. Am. Chem. Soc. 102, 4481–4485.

    Article  CAS  Google Scholar 

  9. Nishikimi, M., and Machlin, L.J. (1975)Arch. Biochem. Biophys. 170, 684–689.

    Article  PubMed  CAS  Google Scholar 

  10. Ozawa, T., and Hanaki, A. (1983)Biochem. Int. 6, 685–692.

    PubMed  CAS  Google Scholar 

  11. Eggitt, P.W.R., and Norris, F.W. (1956)J. Sci. Food Agr. 7, 493–511.

    Article  CAS  Google Scholar 

  12. Csallany, A. Saari, Chiu, M., and Draper, H.H. (1970)Lipids 5, 63–70.

    Article  CAS  Google Scholar 

  13. Ha, Y.L., and Csallany, A. Saari (1988)Lipids 23, 359–361.

    Article  PubMed  CAS  Google Scholar 

  14. Fee, J.A., and Hildenbrand, P.G. (1974)FEBS Lett., 39, 79–82.

    Article  PubMed  CAS  Google Scholar 

  15. Csallany, A. Saari, and Draper, H.H. (1963)Arch. Biochem. Biophys. 100, 335–337.

    Article  PubMed  CAS  Google Scholar 

  16. Ozawa, T., and Hanaki, A. (1981)Chem. Pharm. Bull. 29, 926–928.

    CAS  Google Scholar 

  17. Matsumoto, S., Matsuo, M., and Iitaka, Y. (1986)J. Org. Chem. 51, 1435–1440.

    Article  CAS  Google Scholar 

  18. Matsumoto, S., and Matsuo, M. (1977)Tetrahedron Lett., 1999–2000.

  19. Ozawa, T., and Hanaki, A. (1985)Biochem. Biophys. Res. Commun. 126, 873–878.

    Article  PubMed  CAS  Google Scholar 

  20. Nishikimi, M. (1975)Arch. Biochem. Biophys. 166, 273–275.

    Article  PubMed  CAS  Google Scholar 

  21. DiGuiseppi, J., and Fridovich, I. (1984)CRC Crit. Rev. Toxicol. 12, 315–341.

    CAS  Google Scholar 

  22. Krinsky, N.I. (1979) inSinglet Oxygen. (Wasserman, H.H., and Murray, R.W., eds.) pp. 597–641. Academic Press, New York.

    Google Scholar 

  23. Smith, L.I., Spillane, L.J., and Kolthoff, I.M. (1942)J. Am. Chem. Soc. 64, 447–451.

    Article  CAS  Google Scholar 

  24. Matsuo, M., and Matsumoto, S. (1983)Lipids 18, 81–86.

    Article  CAS  Google Scholar 

  25. Nishinaga, A., Itahara, T., Shimizu T., and Matsuura, T. (1978)J. Am. Chem. Soc. 100, 1820–1825.

    Article  CAS  Google Scholar 

  26. Cohen, G., and Sinet, P.M. (1981) inOxygen and Oxy-Radicals in Chemistry and Biology (Rodgers, M.A.J., and Powers, E.L., eds.) pp. 45–54, Academic Press, New York.

    Google Scholar 

  27. Khan, A.U. (1977)J. Am. Chem. Soc. 99, 370–371.

    Article  CAS  Google Scholar 

  28. Pederson, T.C., and Aust, S.D. (1973)Biochem. Biophys. Res. Commun. 52, 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  29. Winterle, J., Dulin, D., and Mill, T. (1984)J. Org. Chem. 49, 491–495.

    Article  CAS  Google Scholar 

  30. Grams, G.W., and Inglett, G.E. (1972)Lipids 7, 442–444.

    Article  CAS  Google Scholar 

  31. Grams, G.W., Eskins, K., and Inglett, G.E. (1972)J. Am. Chem. Soc. 94, 866–868.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Csallany, A.S., Ha, Y.L. α-tocopherol oxidation mediated by superoxide anion (O 2 ) I. Reactions in aprotic and protic conditions. Lipids 27, 195–200 (1992). https://doi.org/10.1007/BF02536178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536178

Keywords

Navigation