Skip to main content
Log in

Hypothyroidism and thyroxin substitution affect the n−3 fatty acid composition of rat liver mitochondria

  • Article
  • Published:
Lipids

Abstract

The effects of hypothyroidism and of daily treatment for up to 21 days with thyroxin (T4, 0.5 μg/100 g body weight) on the fatty acid composition of total lipid, phosphatidylethanolamine, and phosphatidylcholine of rat liver mitochondria were studied. The fatty acid compositions of hypothyroid and euthyroid (control) rats of similar age were compared. The n−6 and n−3 polyunsaturated fatty acids (PUFA) were affected differently by the hypothyroid state. The levels of linoleic (18∶2n−6), γ-linolenic (18∶3n−6) and dihomo-γ-linolenic acids (20∶3n−6) were higher in hypothyroid rats than in controls, while the level of arachidonic acid (20∶4n−6) was lower, which suggests an impairment of the elongase and desaturase activities. The n−3 polyunsaturated fatty acids, eicosapentaenoic (EPA, 20∶5n−3) and docosapentaenoic (22∶5n−3) acids, were higher in hypothyroid rats, whereas the linolenic acid (18∶3n−3) content remained constant. The level of docosahexaenoic acid (DHA, 22∶6n−3) was dramatically decreased in hypothyroid rats, while the levels of C22 n−6 fatty acids were unchanged. The differences were probably due to the competition between n−3 and n−6 PUFA for desaturases, elongases and acyltransferases. When hypothyroid rats were treated with thyroxin, the changes induced by hypothyroidism in the proportions of n−6 fatty acids were rapidly reversed, while the changes in the n−3 fatty acids were only partially reversed. After 21 days of thyroxin treatments, the DHA content was only half as high in hypothyroid rats than in euthyroid rats. These results suggest that the conversion of 18∶2n−6 to 20∶4n−6 is suppressed in the hypothyroid state which favors the transformation of 18∶3n−3 to 20∶5n−3. The marked decrease in DHA content indicates an impairment of the enzymes involved in the DHA metabolism, possibly the n−3 Δ4 desaturase or the acyltransferases. The increased levels of EPA and 22∶5n−3 is consistent with the inhibition of the n−3 pathway at the Δ4 desaturase step. Observed modifications in the fatty acid composition may significantly alter eicosanoid synthesis and membrane functions in hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid, 20∶4n−6

DHA:

docosahexaenoic acid, 22∶6n−3

DPA:

docosapentaenoic acid, 22∶5n−3

EFA:

essential fatty acid

EPA:

eicosapentaenoic acid, 20∶5n−3

FAME:

fatty acid methyl ester

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PUFA:

polyunsaturated fatty acid(s)

SEM:

standard error of the mean

T3:

3,3′,5-triiodothyronine

T4:

3,3′,5,5′-tetraiodothyronine, thyroxin

UI:

unsaturation index

References

  1. Brand, M.D., and Murphy, M.P. (1987)Biol. Rev. 62, 141–193.

    Article  PubMed  CAS  Google Scholar 

  2. Hoch, F.L. (1988)Prog. Lipid Res. 27, 199–270.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, Y.-D.I., and Hoch, F.L. (1976)Arch. Biochem. Biophys. 172, 741–744.

    Article  PubMed  CAS  Google Scholar 

  4. Platner, W.S., Patnayak, B.C., and Chaffee, R.R.J. (1972)Proc. Soc. Exp. Biol. Med. 140, 857–861.

    PubMed  CAS  Google Scholar 

  5. Patton, J.F., and Platner, W.S. (1970)Am. J. Physiol. 218, 1417–1422.

    PubMed  CAS  Google Scholar 

  6. Shaw, M.J., and Hoch, F.L. (1977)J. Mol. Cell. Cardiol. 9, 749–761.

    Article  PubMed  Google Scholar 

  7. Hoch, F.L. (1982)J. Mol. Cell. Cardiol. 14, 81–90.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, Y.-D.I., and Hoch, F.L. (1977)Arch. Biochem. Biophys. 181, 470–483.

    Article  CAS  Google Scholar 

  9. Hulbert, A.J., Augee, M.L., and Raison, J.K. (1976)Biochim. Biophys. Acta 455, 597–601.

    Article  PubMed  CAS  Google Scholar 

  10. Beleznai, Z., Amler, E., Rauchová, H., Drahota, Z., and Janscik, V. (1989)FEBS Lett. 243, 247–250.

    Article  PubMed  CAS  Google Scholar 

  11. Hafner, R.P., Leake, M.J., and Brand, M.D. (1989)FEBS Lett. 248, 175–178.

    Article  PubMed  CAS  Google Scholar 

  12. Paradies, G., and Ruggiero, F.M. (1989)Arch. Biochem. Biophys. 269, 595–602.

    Article  PubMed  CAS  Google Scholar 

  13. Ves-Losada, A., and Peluffo, R.O. (1989)Lipids 24, 931–935.

    PubMed  CAS  Google Scholar 

  14. Faas, F.H., and Carter, W.J. (1982)Biochem. J. 207, 29–35.

    PubMed  CAS  Google Scholar 

  15. Hoch, F.L., Subramanian, C., Dhopeshwarkar, G.A., and Mead, J.F. (1981)Lipids 16, 328–335.

    PubMed  CAS  Google Scholar 

  16. Shaw, M.J., and Hoch, F.L. (1976)Life Sci. 19, 1359–1364.

    Article  PubMed  CAS  Google Scholar 

  17. Ellefson, R.D., and Mason, H.L. (1964)Endocrinology 75, 179–186.

    Article  PubMed  CAS  Google Scholar 

  18. Faas, F.H., and Carter, W.J. (1981)Biochem. J. 193, 845–852.

    PubMed  CAS  Google Scholar 

  19. de Gòmez Dumm, I.N.T., de Alaniz, M.J.T., and Brenner, R.R. (1977)Adv. Exp. Med. Biol. 83, 609–616.

    PubMed  Google Scholar 

  20. Kumar, S., Das, D.K., Dorfman, A.E., and Asato, N. (1977)Arch. Biochem. Biophys. 178, 507–516.

    Article  PubMed  CAS  Google Scholar 

  21. Gnoni, G.V., Landriscina, C., and Quagliariello, E. (1978)FEBS Lett. 94, 179–182.

    Article  PubMed  CAS  Google Scholar 

  22. Hoch, F.L. (1982)Prog. Lipid Res. 20, 225–228.

    Article  Google Scholar 

  23. Barlow, S.M., Young, F.V.K., and Duthie, I.F. (1990)Proc. Nutr. Soc. 49, 13–21.

    Article  PubMed  CAS  Google Scholar 

  24. von Schacky, C. (1990)Dtsch. Med. Wschr. 115, 224–231.

    Article  Google Scholar 

  25. Budowski, P. (1988)World Rev. Nutr. Diet 57, 214–274.

    PubMed  CAS  Google Scholar 

  26. Lands, W.E.M. (1986)Fish and Human Health, Academic Press, Orlando.

    Google Scholar 

  27. Herold, M.P., and Kinsella, J.E. (1986)Am. J. Clin. Nutr. 43, 566–598.

    PubMed  CAS  Google Scholar 

  28. Kinsella, J.E., Broughton, K.S., and Whelan, J.W. (1990)J. Nutr. Biochem. 1, 123–141.

    Article  PubMed  CAS  Google Scholar 

  29. Sprecher, H. (1989)J. Intern. Med. 225 (Suppl.), 5–9.

    Google Scholar 

  30. Johnson, D., and Lardy, H.I. (1967)Methods Enzymol. 10, 41–47.

    Article  Google Scholar 

  31. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  32. Zambrano, F., Fleischer, S., and Fleischer, B. (1975)Biochim. Biophys. Acta 380, 357–369.

    PubMed  CAS  Google Scholar 

  33. Daum, G. (1985)Biochim. Biophys. Acta 822, 1–42.

    PubMed  CAS  Google Scholar 

  34. Holman, R.T. (1971)Prog. Chem. Fats Other Lipids 9, 275–348.

    Article  Google Scholar 

  35. Sanders, T.A.B. (1988)Nutr. Res. Reviews 1, 57–78.

    Article  CAS  Google Scholar 

  36. Beare-Rogers, J. (1988)J. Am. Oil Chem. Soc. 65, 91–95.

    CAS  Google Scholar 

  37. Landriscina, C., Gnoni, G.V., and Quagliariello, E. (1976)Eur. J. Biochem. 71, 135–143.

    Article  PubMed  CAS  Google Scholar 

  38. Kawashima, Y., and Kozuka, H. (1985)Biochim. Biophys. Acta 834, 118–123.

    PubMed  CAS  Google Scholar 

  39. Mariash, C.N., and Oppenheimer, J.H. (1983) inMolecular Basis of Thyroid Hormone Action (Oppenheimer, J.H., and Samuels, H.H., eds.) pp. 265–292, Academic Press, New York.

    Google Scholar 

  40. Holman, R.T. (1986)Prog. Lipid Res. 25, 29–39.

    Article  PubMed  CAS  Google Scholar 

  41. Garg, M.L., Sebokova, E., Thomson, A.B.R., and Clandinin, M.T. (1988)Biochem. J. 249, 351–356.

    PubMed  CAS  Google Scholar 

  42. Campbell, K.L., and Davis, C.A. (1990)Am. J. Vet. Res. 51, 752–756.

    PubMed  CAS  Google Scholar 

  43. Rosenthal, M.D., Garcia, M.C., Jones, M.R., and Sprecher, H. (1991)Biochim. Biophys. Acta 1083, 29–36.

    PubMed  CAS  Google Scholar 

  44. Willis, A.L. (1981)Nutr. Rev. 39, 289–301.

    Article  PubMed  CAS  Google Scholar 

  45. Lagarde, M., Gualde, N., and Rigoud, M. (1989)Biochem. J. 257, 313–320.

    PubMed  CAS  Google Scholar 

  46. Hoffmann, P., and Mest, H.J. (1987)Biomed. Biochim. Acta 46, 639–650.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Raederstorff, D., Meier, C.A., Moser, U. et al. Hypothyroidism and thyroxin substitution affect the n−3 fatty acid composition of rat liver mitochondria. Lipids 26, 781–787 (1991). https://doi.org/10.1007/BF02536158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536158

Keywords

Navigation