Skip to main content
Log in

Adenosine triphosphate (ATP) and other nucleotides stimulate the hydrolysis of phosphatidylethanolamine in intact fibroblasts

  • Article
  • Published:
Lipids

Abstract

Addition of adenosine triphosphate (ATP) to [14C]ethanolamine-prelabeled NIH 3T3 fibroblasts resulted in rapid formation of [14C]ethanolamine from the prelabeled cellular phosphatidylethanolamine (PtdEtn) pool. After 2-min exposure, 10 μM ATP had near maximal effects on PtdEtn hydrolysis. Several other nucleotides, including UTP, ITP, and the stable ATP analog adenosine 5′-O-(3-thiotriphosphate) (ATPγS), also had stimulatory effects on PtdEtn hydrolysis with a potency comparable to that observed with ATP. The same nucleotides which acted on PtdEtn hydrolysis also had similar stimulatory effects on the hydrolysis of phosphatidylcholine (PtdCho) in [14C]choline-labeled cells. In isolated membranes, Mg2+ greatly enhanced the stimulatory effects of ATP and ATPγS, but not of other nucleotides, on the hydrolysis of PtdEtn and PtdCho. Results indicate that in isolated membranes, both ATP and ATPγS stimulate phospholipid hydrolysis by two different mechanisms, but in intact cells only one of these mechanisms appears to be responsive to externally added nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATPγS:

adenosine 5′[β,γ-O-(3-thiotriphosphate)

AdoPP[NH]P:

adenosine 5′[β,γ-imido)triphosphate

AdoPP[CH2]P:

adenosine 5′[β,γ-methylene]triphosphate

DMEM:

Dulbecco's modified Eagle's medium

GTPγS:

guanosine-5′-O-(3-thiotriphosphate)

PtdCho:

phosphatidylcholine

PtdEtn:

phosphatidylethanolamine

TLC:

thin-layer chromatography

References

  1. Gordon, J.L. (1986)Biochem. J. 233, 309–319.

    PubMed  CAS  Google Scholar 

  2. Dubyak, G.R., and De Young, M.B. (1985)J. Biol. Chem. 260, 10653–10661.

    PubMed  CAS  Google Scholar 

  3. Dubyak, G.R. (1986)Arch. Biochem. Biophys. 245, 84–95.

    Article  PubMed  CAS  Google Scholar 

  4. Phaneuf, S., Berta, P., Casanova, J., and Cavadore, J.C. (1987)Biochem. Biophys. Res. Commun. 143, 454–460.

    Article  PubMed  CAS  Google Scholar 

  5. Okajima, F., Tokumitsu, Y., Kondo, Y., and Ui, M. (1987)J. Biol. Chem. 262, 13483–13490.

    PubMed  CAS  Google Scholar 

  6. Harden, T.K., Hawkins, P.T., Stephens, L., Boyer, J.L., and Downes, C.P. (1988)Biochem. J. 252, 583–593.

    PubMed  CAS  Google Scholar 

  7. Cockroft, S., and Stutchfield, J. (1989)FEBS Lett. 245, 25–29.

    Article  Google Scholar 

  8. Van der Merwe, P.A., Wakefield, I.K., Fine, J., Millar, R.P., and Davidson, J.S. (1989)FEBS Lett. 243, 333–336.

    Article  PubMed  Google Scholar 

  9. Fine, J., Cole, P., and Davidson, J.S. (1989)Biochem. J. 263, 371–376.

    PubMed  CAS  Google Scholar 

  10. Pfeilschifter, J., Thüring, B., and Festa, F. (1989)Eur. J. Biochem. 186, 509–513.

    Article  PubMed  CAS  Google Scholar 

  11. Cowen, D.S., Sanders, M., and Dubyak, G. (1990)Biochim. Biophys. Acta 1053, 195–203.

    Article  PubMed  CAS  Google Scholar 

  12. Bocckino, S.B., Blackmore, P.F., Wilson, P.B., and Exton, J.H. (1987)J. Biol. Chem. 262, 15309–15315.

    PubMed  CAS  Google Scholar 

  13. Martin, T.W., and Michaelis, K. (1989)J. Biol. Chem. 264, 8847–8856.

    PubMed  CAS  Google Scholar 

  14. Kiss, Z., and Anderson, W.B. (1990)J. Biol. Chem. 265, 7345–7350.

    PubMed  CAS  Google Scholar 

  15. Kiss, Z., and Anderson, W.B. (1989)J. Biol. Chem. 264, 1484–1487.

    Google Scholar 

  16. Kiss, Z. (1991)Lipids 26, 321–323.

    PubMed  CAS  Google Scholar 

  17. Cook, S.J., and Wakelam, M.J.O. (1989)Biochem. J. 263, 581–587.

    PubMed  CAS  Google Scholar 

  18. Kiss, Z., Chattopadhyay, J., and Pettit, G.R. (1991)Biochem. J. 273, 189–194.

    PubMed  CAS  Google Scholar 

  19. Kiss, Z. (1976)Eur. J. Biochem. 67, 557–561.

    Article  PubMed  CAS  Google Scholar 

  20. Kiss, Z., and Hanoune, J. (1978)Biochim. Biophys. Acta 538, 458–472.

    PubMed  CAS  Google Scholar 

  21. Kiss, Z., Crilly, K., and Chattopadhyay, J. (1991)Eur. J. Biochem. 197, 785–790.

    Article  PubMed  CAS  Google Scholar 

  22. Kanfer, J.N. (1980)Can. J. Biochem. 58, 1370–1380.

    Article  PubMed  CAS  Google Scholar 

  23. Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984)Biochemistry 23, 5036–5041.

    Article  PubMed  CAS  Google Scholar 

  24. Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M., and Tomita, F. (1986)Biochem. Biophys. Res. Commun. 135, 397–402.

    Article  PubMed  CAS  Google Scholar 

  25. Nakadate, T., Yeng, A.Y., and Blumberg, P.M. (1988)Biochem. Pharmacol. 37, 1541–1545.

    Article  PubMed  CAS  Google Scholar 

  26. Staats, J., Marguardt, D., and Center, M.S. (1990)J. Biol. Chem. 265, 4084–4090.

    PubMed  CAS  Google Scholar 

  27. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, V., and Nishizuka, Y. (1982)J. Biol. Chem. 257, 7847–7851.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kiss, Z., Crilly, K.S. Adenosine triphosphate (ATP) and other nucleotides stimulate the hydrolysis of phosphatidylethanolamine in intact fibroblasts. Lipids 26, 777–780 (1991). https://doi.org/10.1007/BF02536157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536157

Keywords

Navigation