Interrelationship of stearic acid content and triacylglycerol composition of lard, beef tallow and cocoa butter in rats

Abstract

We investigated modes whereby stearic acid (18∶0) exerts a neutral or cholesterol-lowering effect using dietary fats which provided graded levels of 18∶0 and distinct triacylglycerol (TAG) profiles. Male Sprague-Dawley rats (150–175 g) were fed diets containing 0.2% cholesterol and 16% fat from corn oil, or from 1% corn oil plus 15% lard (13.2% 18∶0), beef tallow (19.2% 18∶0) or cocoa butter (34.7% 18∶0) for 3 wk, and then killed in a fasted or fed state. Chylomicron (CM) fatty acid profiles suggested reduced absorption of 18∶0 with greater 18∶0 intake. CM TAG profiles indicated a reduction or loss of two TAG species compared to the TAG profiles of the stearate-rich diets: 1-palmitoyl-2-oleoyl-3-stearoyl glycerol (POS) and 1,3-distearoyl-2-oleoyl glycerol (SOS). Hepatic total cholesterol concentrations were 54–77% lower (P<0.01) in the cocoa butter-fed than the lard- and beef tallow-fed groups. The cocoa butter group showed a significantly lower ratio of high-density lipoprotein esterified/free cholesterol than all other groups. Hepatic stearoyl-CoA and oleoyl-CoA concentrations, the substrate and product for hepatic δ9 desaturase, were not significantly different for corn oil-fed and cocoa butter-fed groups in spite of a large difference in 18∶0 intake. These data suggest that the neutral or cholesterol-lowering effect of 18∶0 is not due to hepatic conversion of stearic to oleic acid, and that POS and SOS are poorly absorbed from stearate-rich dietary fats.

This is a preview of subscription content, access via your institution.

Abbreviations

ANOVA:

analysis of variance

Cn :

total acyl carbon number

CM:

chylomicron

E/F:

esterified/free

EC:

esterified cholesterol

FAME:

fatty acid methyl esters

GC-FID:

gas chromatography-flame-ionization detection

GLM:

general linear models

HDL:

high-density lipoprotein

LDL:

low-density lipoprotein

L:

linoleic acid

O:

oleic acid

P:

palmitic acid

POP:

1,3-dipalmitoyl-2-oleoyl glycerol

POS:

1-palmitoyl-2-oleoyl-3-stearoyl glycerol

SOS:

1,3-distearoyl-2-oleoyl glycerol

TAG:

triacylglycerol

TG:

triglycerides

VLDL:

very low density lipoprotein

References

  1. 1.

    Keys, A., Anderson, J.T., and Grande, F. (1965)Metabolism 14, 776–787.

    CAS  Article  Google Scholar 

  2. 2.

    Reiser, R., Probstfield, S.L., Silvers, P., Scott, L.W., Shorrey, M.L., Wood, R.D., O'Brien, C., Grotto, A.M., Phil, D., and Insull, W. (1985)Am. J. Clin. Nutr. 42, 190–197.

    PubMed  CAS  Google Scholar 

  3. 3.

    Denke, M.A., and Grundy, S.M. (1991)Am. J. Clin. Nutr. 54, 1036–1040.

    PubMed  CAS  Google Scholar 

  4. 4.

    Bonanome, A., and Grundy, S.M. (1988)N. Engl. J. Med. 318, 1244–1248.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Kris-Etherton, P.M., Derr, J., Mitchell, D.C., Mustad, V.A., Russell, M.E., McDonnell, E.T., Salabsky, D., and Pearson, T.A. (1993)Metabolism 42, 121–129.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Kritchevsky, D., Tepper, S.A., Lloyd, L.M., Davidson, L.M., and Klurfeld, D.M. (1988)Nutr. Res. 8, 287–294.

    CAS  Article  Google Scholar 

  7. 7.

    Kritchevsky, D., Tepper, S.A., Bises, G., and Klurfeld, D.M. (1983)Nutr. Res. 3, 229–236.

    CAS  Article  Google Scholar 

  8. 8.

    The American Dietetic Association (1991)J. Am. Diet. Assoc. 91, 918.

    Google Scholar 

  9. 9.

    Mattson, F.H., Nolen, G.A., and Webb, M.R. (1979)J. Nutr. 109, 1682–1687.

    PubMed  CAS  Google Scholar 

  10. 10.

    Apgar, J.L., Shivley, C.A., and Tarka, S.M. (1987)J. Nutr. 117, 660–665.

    PubMed  CAS  Google Scholar 

  11. 11.

    Mitchell, D.C., McMahon, K.Z., Shivey, C.A., Apgar, J.L., and Kris-Etherton, P.M. (1989)Am. J. Clin. Nutr. 50, 983–986.

    PubMed  CAS  Google Scholar 

  12. 12.

    Bergstedt, S.E., Hayashi, H., Kritchevsky, D., and Tso, P. (1990)Am. J. Physiol. 259, G386-G393.

    PubMed  CAS  Google Scholar 

  13. 13.

    Bonanome, A., and Grundy, S.M. (1989)J. Nutr. 119, 1556–1560.

    PubMed  CAS  Google Scholar 

  14. 14.

    Kritchevsky, D. (1988)Nutr. Rev. 46, 177–181.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Small, D.M. (1991)Annu. Rev. Nutr. 11, 413–434.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Redgrave, T.G., Kodali, D.R., and Small, D.M. (1988)J. Biol. Chem. 263, 5118–5123.

    PubMed  CAS  Google Scholar 

  17. 17.

    Hayes, K.C. (1993)Am. J. Clin. Nutr. 57, 231.

    PubMed  CAS  Google Scholar 

  18. 18.

    Geeraert, E., and Sandra, P. (1985)Chromatogr. Commun. 8, 414–421.

    Google Scholar 

  19. 19.

    Geeraert, E. (1987)Biomedical Research and Clinical Diagnosis (Kuksis, A., ed.) pp. 48–75, Elsevier, Amsterdam.

    Google Scholar 

  20. 20.

    American Institute of Nutrition (1980)J. Nutr. 110, 1726.

    Google Scholar 

  21. 21.

    Ney, D.M., Lai, H.-C., Lasekan, J.B., and Lefevre, M. (1991)J. Nutr. 121, 1311–1322.

    PubMed  CAS  Google Scholar 

  22. 22.

    Cohen, A.L., Thompson, D.O., Choi, K., Karmali, R.A., and Rose, D.P. (1986)J. Natl. Cancer Inst. 77, 43–51.

    PubMed  CAS  Google Scholar 

  23. 23.

    Ney, D.M., Lasekan, J.B., Spennetta, T., Grah, M., and Shrago, E. (1989)Lipids 24, 233–235.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Kalzuny, M.A., Duncan, L.A., Merrit, M.V., and Epps, D.E. (1985)J. Lipid Res. 26, 135–140.

    Google Scholar 

  25. 25.

    Lepage, G., and Roy, C.C. (1986)J. Lipid Res. 27, 114–120.

    PubMed  CAS  Google Scholar 

  26. 26.

    Kuksis, A., and Myher, J.J. (1990)J. Chromatogr. 550, 427–441.

    Article  Google Scholar 

  27. 27.

    Rezanka, T., and Mares, P. (1991)J. Chromatogr. 542, 145–159.

    CAS  Article  Google Scholar 

  28. 28.

    SAS Institute Inc. (1985) SAS User's Guide; Statistics, version 5. SAS Institute, Inc., Cary.

    Google Scholar 

  29. 29.

    Breckenridge, W.C. (1978)Handbook of Lipid Research (Kuksis, A., ed.) Volume 1, pp. 197–230, Plenum Press, New York.

    Google Scholar 

  30. 30.

    Monsma, C.C., (1992) The Effects of Stearate-Rich Dietary Fats on Lipid Metabolism in the Rat, M.S. Thesis, University of Wisconsin, Madison, pp. 124–137.

    Google Scholar 

  31. 31.

    Giron, M.D., Mataix, F.J., and Suarez, M.D. (1990)Biochim. Biophys. Acta 105, 69–73.

    Google Scholar 

  32. 32.

    Garg, M.L., Keelan, M., Thomson, A.B.R., and Clandinin, M.T. (1990)Can. J. Physiol. Pharmacol. 68, 636–641.

    PubMed  CAS  Google Scholar 

  33. 33.

    Morrissey, R.B., Burkholder, B.D., White, D.M., and Tarka, S.M. (1986)Nutr. Res. 6, 319–326.

    CAS  Article  Google Scholar 

  34. 34.

    Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M.J., Setlow, B., and Redline, R. (1974)Proc. Natl. Acad. Sci. USA 71, 4565–4569.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Elovson, J. (1965)Biochim. Biophys. Acta 106, 480–494.

    PubMed  CAS  Google Scholar 

  36. 36.

    Ntambi, J.M. (1992)J. Biol. Chem. 267, 10925–10930.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denise M. Ney.

About this article

Cite this article

Monsma, C.C., Ney, D.M. Interrelationship of stearic acid content and triacylglycerol composition of lard, beef tallow and cocoa butter in rats. Lipids 28, 539–547 (1993). https://doi.org/10.1007/BF02536086

Download citation

Keywords

  • Cholesteryl Ester
  • Cocoa Butter
  • Beef Tallow
  • Stearic Acid Content
  • Esterify Cholesterol