, Volume 28, Issue 6, pp 539–547 | Cite as

Interrelationship of stearic acid content and triacylglycerol composition of lard, beef tallow and cocoa butter in rats

  • Cathy C. Monsma
  • Denise M. Ney


We investigated modes whereby stearic acid (18∶0) exerts a neutral or cholesterol-lowering effect using dietary fats which provided graded levels of 18∶0 and distinct triacylglycerol (TAG) profiles. Male Sprague-Dawley rats (150–175 g) were fed diets containing 0.2% cholesterol and 16% fat from corn oil, or from 1% corn oil plus 15% lard (13.2% 18∶0), beef tallow (19.2% 18∶0) or cocoa butter (34.7% 18∶0) for 3 wk, and then killed in a fasted or fed state. Chylomicron (CM) fatty acid profiles suggested reduced absorption of 18∶0 with greater 18∶0 intake. CM TAG profiles indicated a reduction or loss of two TAG species compared to the TAG profiles of the stearate-rich diets: 1-palmitoyl-2-oleoyl-3-stearoyl glycerol (POS) and 1,3-distearoyl-2-oleoyl glycerol (SOS). Hepatic total cholesterol concentrations were 54–77% lower (P<0.01) in the cocoa butter-fed than the lard- and beef tallow-fed groups. The cocoa butter group showed a significantly lower ratio of high-density lipoprotein esterified/free cholesterol than all other groups. Hepatic stearoyl-CoA and oleoyl-CoA concentrations, the substrate and product for hepatic δ9 desaturase, were not significantly different for corn oil-fed and cocoa butter-fed groups in spite of a large difference in 18∶0 intake. These data suggest that the neutral or cholesterol-lowering effect of 18∶0 is not due to hepatic conversion of stearic to oleic acid, and that POS and SOS are poorly absorbed from stearate-rich dietary fats.


Cholesteryl Ester Cocoa Butter Beef Tallow Stearic Acid Content Esterify Cholesterol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



analysis of variance


total acyl carbon number






esterified cholesterol


fatty acid methyl esters


gas chromatography-flame-ionization detection


general linear models


high-density lipoprotein


low-density lipoprotein


linoleic acid


oleic acid


palmitic acid


1,3-dipalmitoyl-2-oleoyl glycerol


1-palmitoyl-2-oleoyl-3-stearoyl glycerol


1,3-distearoyl-2-oleoyl glycerol






very low density lipoprotein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keys, A., Anderson, J.T., and Grande, F. (1965)Metabolism 14, 776–787.CrossRefGoogle Scholar
  2. 2.
    Reiser, R., Probstfield, S.L., Silvers, P., Scott, L.W., Shorrey, M.L., Wood, R.D., O'Brien, C., Grotto, A.M., Phil, D., and Insull, W. (1985)Am. J. Clin. Nutr. 42, 190–197.PubMedGoogle Scholar
  3. 3.
    Denke, M.A., and Grundy, S.M. (1991)Am. J. Clin. Nutr. 54, 1036–1040.PubMedGoogle Scholar
  4. 4.
    Bonanome, A., and Grundy, S.M. (1988)N. Engl. J. Med. 318, 1244–1248.PubMedCrossRefGoogle Scholar
  5. 5.
    Kris-Etherton, P.M., Derr, J., Mitchell, D.C., Mustad, V.A., Russell, M.E., McDonnell, E.T., Salabsky, D., and Pearson, T.A. (1993)Metabolism 42, 121–129.PubMedCrossRefGoogle Scholar
  6. 6.
    Kritchevsky, D., Tepper, S.A., Lloyd, L.M., Davidson, L.M., and Klurfeld, D.M. (1988)Nutr. Res. 8, 287–294.CrossRefGoogle Scholar
  7. 7.
    Kritchevsky, D., Tepper, S.A., Bises, G., and Klurfeld, D.M. (1983)Nutr. Res. 3, 229–236.CrossRefGoogle Scholar
  8. 8.
    The American Dietetic Association (1991)J. Am. Diet. Assoc. 91, 918.Google Scholar
  9. 9.
    Mattson, F.H., Nolen, G.A., and Webb, M.R. (1979)J. Nutr. 109, 1682–1687.PubMedGoogle Scholar
  10. 10.
    Apgar, J.L., Shivley, C.A., and Tarka, S.M. (1987)J. Nutr. 117, 660–665.PubMedGoogle Scholar
  11. 11.
    Mitchell, D.C., McMahon, K.Z., Shivey, C.A., Apgar, J.L., and Kris-Etherton, P.M. (1989)Am. J. Clin. Nutr. 50, 983–986.PubMedGoogle Scholar
  12. 12.
    Bergstedt, S.E., Hayashi, H., Kritchevsky, D., and Tso, P. (1990)Am. J. Physiol. 259, G386-G393.PubMedGoogle Scholar
  13. 13.
    Bonanome, A., and Grundy, S.M. (1989)J. Nutr. 119, 1556–1560.PubMedGoogle Scholar
  14. 14.
    Kritchevsky, D. (1988)Nutr. Rev. 46, 177–181.PubMedCrossRefGoogle Scholar
  15. 15.
    Small, D.M. (1991)Annu. Rev. Nutr. 11, 413–434.PubMedCrossRefGoogle Scholar
  16. 16.
    Redgrave, T.G., Kodali, D.R., and Small, D.M. (1988)J. Biol. Chem. 263, 5118–5123.PubMedGoogle Scholar
  17. 17.
    Hayes, K.C. (1993)Am. J. Clin. Nutr. 57, 231.PubMedGoogle Scholar
  18. 18.
    Geeraert, E., and Sandra, P. (1985)Chromatogr. Commun. 8, 414–421.Google Scholar
  19. 19.
    Geeraert, E. (1987)Biomedical Research and Clinical Diagnosis (Kuksis, A., ed.) pp. 48–75, Elsevier, Amsterdam.Google Scholar
  20. 20.
    American Institute of Nutrition (1980)J. Nutr. 110, 1726.Google Scholar
  21. 21.
    Ney, D.M., Lai, H.-C., Lasekan, J.B., and Lefevre, M. (1991)J. Nutr. 121, 1311–1322.PubMedGoogle Scholar
  22. 22.
    Cohen, A.L., Thompson, D.O., Choi, K., Karmali, R.A., and Rose, D.P. (1986)J. Natl. Cancer Inst. 77, 43–51.PubMedGoogle Scholar
  23. 23.
    Ney, D.M., Lasekan, J.B., Spennetta, T., Grah, M., and Shrago, E. (1989)Lipids 24, 233–235.PubMedCrossRefGoogle Scholar
  24. 24.
    Kalzuny, M.A., Duncan, L.A., Merrit, M.V., and Epps, D.E. (1985)J. Lipid Res. 26, 135–140.Google Scholar
  25. 25.
    Lepage, G., and Roy, C.C. (1986)J. Lipid Res. 27, 114–120.PubMedGoogle Scholar
  26. 26.
    Kuksis, A., and Myher, J.J. (1990)J. Chromatogr. 550, 427–441.CrossRefGoogle Scholar
  27. 27.
    Rezanka, T., and Mares, P. (1991)J. Chromatogr. 542, 145–159.CrossRefGoogle Scholar
  28. 28.
    SAS Institute Inc. (1985) SAS User's Guide; Statistics, version 5. SAS Institute, Inc., Cary.Google Scholar
  29. 29.
    Breckenridge, W.C. (1978)Handbook of Lipid Research (Kuksis, A., ed.) Volume 1, pp. 197–230, Plenum Press, New York.Google Scholar
  30. 30.
    Monsma, C.C., (1992) The Effects of Stearate-Rich Dietary Fats on Lipid Metabolism in the Rat, M.S. Thesis, University of Wisconsin, Madison, pp. 124–137.Google Scholar
  31. 31.
    Giron, M.D., Mataix, F.J., and Suarez, M.D. (1990)Biochim. Biophys. Acta 105, 69–73.Google Scholar
  32. 32.
    Garg, M.L., Keelan, M., Thomson, A.B.R., and Clandinin, M.T. (1990)Can. J. Physiol. Pharmacol. 68, 636–641.PubMedGoogle Scholar
  33. 33.
    Morrissey, R.B., Burkholder, B.D., White, D.M., and Tarka, S.M. (1986)Nutr. Res. 6, 319–326.CrossRefGoogle Scholar
  34. 34.
    Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M.J., Setlow, B., and Redline, R. (1974)Proc. Natl. Acad. Sci. USA 71, 4565–4569.PubMedCrossRefGoogle Scholar
  35. 35.
    Elovson, J. (1965)Biochim. Biophys. Acta 106, 480–494.PubMedGoogle Scholar
  36. 36.
    Ntambi, J.M. (1992)J. Biol. Chem. 267, 10925–10930.PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1993

Authors and Affiliations

  • Cathy C. Monsma
    • 1
  • Denise M. Ney
    • 1
  1. 1.Department of Nutritional SciencesUniversity of WisconsinMadison

Personalised recommendations