Skip to main content
Log in

Differential utilization of eicosapentaenoic acid and docosahexaenoic acid in human plasma

  • Article
  • Published:


It has recently been shown that the ω3 fatty acid status in humans can be predicted by the concentration of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in plasma phospholipids [Bjerve, K.S., Brubakk, A.M., Fougner, K.J., Johnsen, H., Midjthell, K., and Vik, T. (1993)Am. J. Clin. Nutr., in press]. In countries with low intake of ω3 fatty acids, the level of EPA in plasma phospholipids is often only about one-fifth the concentration of DHA. The purpose of this study was to investigate whether this difference in the concentration of these two fatty acids was due to a selective loss of EPA relative to DHA or to a lower dietary intake of EPA. Seven female volunteers ingested four grams of MaxEPA daily for 2 wk and in the following 4 wk they ate a diet almost completely devoid of the long-chain ω3 fatty acids. The concentrations of the ω3 fatty acids in the plasma cholesteryl esters, triglycerides and phospholipids and the high density lipoprotein phospholipids were examined at weekly intervals throughout the study. There was a more rapid rise in the concentration of EPA than in DHA levels in the supplementation period in all lipid fractions, but there was a disproportionate rise in DHA relative to EPA in the plasma lipids compared with the ratio in the supplement. In the depletion phase there was a rapid disappearance of EPA from all fractions, such that pre-trial levels were reached by one week post-supplementation. The disappearance of DHA was slower, particularly for the plasma phospholipids: at 4 wk post-supplementation, the DHA concentration in this fraction was still 40% above the pre-trial value. It is suggested that the low plasma EPA values relative to DHA are the result of increased β-oxidation of EPA and/or low dietary intake, rather than a rapid conversion of EPA to DHA. One practical result of this experiment is that, compared with DHA, the maintenance of increased EPA levels in plasma (and therefore tissues) would require constant inputs of EPA due to its more rapid loss from the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others



cholesteryl esters


docosahexaenoic acid (22∶6ω3)


docosapentaenoic acid (22∶5ω3)


eicosapentaenoic acid (20∶5ω3)


gas-liquid chromatography


high density lipoproteins


long-chain polyunsaturated fatty acids


low density lipoproteins




polyunsaturated fatty acids




  1. Budowski, P. (1988)Wld. Rev. Nutr. Diet. 57, 214–274.

    CAS  Google Scholar 

  2. Kinsella, J.E., Lokesh, B., and Stone, R.A. (1990)Am. J. Clin. Nutr. 52, 1–28.

    PubMed  CAS  Google Scholar 

  3. Neuringer, M., Anderson, G.J., and Connor, W.E. (1988)Ann. Rev. Nutr. 8, 517–541.

    Article  CAS  Google Scholar 

  4. Dyerberg, J., and Jorgensen, K.A. (1982)Prog. Lipid Res. 21, 255–269.

    Article  PubMed  CAS  Google Scholar 

  5. Simopoulos, A.P. (1989)J. Nutr. 119, 521–528.

    PubMed  CAS  Google Scholar 

  6. Adam, O. (1989) inDietary ω6 and ω3 Fatty Acids. Biological Effects and Nutritional Essentiality (Galli, C., and Simopoulos, A.P., eds.) pp. 33–42, Plenum Press, New York.

    Google Scholar 

  7. Hunter, J.E. (1990)Am. J. Clin. Nutr. 51, 809–814.

    PubMed  CAS  Google Scholar 

  8. Bjerve, K.S., Brubakk, A.M., Fougner, K.J., Johnsen, H., Midjthell, K., and Vik, T. (1993)Am. J. Clin. Nutr., in press.

  9. Glatz, J.F.C., Soffers, A.E.M.F., and Katan, M.B. (1989)Am. J. Clin. Nutr. 49, 269–276.

    PubMed  CAS  Google Scholar 

  10. Phinney, S.D., Odin, R.S., Johnson, S.B., and Holman, R.T. (1990)Am. J. Clin. Nutr. 51, 385–392.

    PubMed  CAS  Google Scholar 

  11. Cleland, L.G., James, M.J., Neumann, M.A., D'Angelo, M., and Gibson, R.A. (1992)Am. J. Clin. Nutr. 55, 395–399.

    PubMed  CAS  Google Scholar 

  12. Brown, A.J., Pang, E., and Roberts, D.C.K. (1991)Prostaglandins Leukotrienes and Essential Fatty Acids 44, 103–106.

    Article  CAS  Google Scholar 

  13. Sinclair, A.J., O'Dea, K., Dunstan, G., Ireland, P.D., and Niall, M. (1987)Lipids 22, 523–529.

    PubMed  CAS  Google Scholar 

  14. Sinclair, A.J., and O'Dea, K. (1990) inReducing Fat in Meat Animals (Wood, J.D., and Fisher, A.V., eds.) pp. 1–47, Elsevier, New York.

    Google Scholar 

  15. Sinclair, A.J., and O'Dea, K. (1987)Food Australia 39, 232–233.

    CAS  Google Scholar 

  16. Sinclair, A.J., McLean, J.G., and Monger, E.A. (1979)Lipids 14, 932–936.

    Article  PubMed  CAS  Google Scholar 

  17. Radack, K.L., Deck, C.C., and Huster, G.A. (1990)Am. J. Clin. Nutr. 51, 599–605.

    PubMed  CAS  Google Scholar 

  18. Bronsgeest-Schoute, H.C., van Gent, C.M., Luten, J.B., and Ruiter, A. (1981)Am. J. Clin. Nutr. 34, 1752–1757.

    PubMed  CAS  Google Scholar 

  19. Mori, T.A., Codde, J.P., Vandongen, R., and Beilin, L.J. (1987)Lipids 22, 744–750.

    Article  PubMed  CAS  Google Scholar 

  20. Brown, A.J., Pang, E., and Roberts, D.C. (1991)Am. J. Clin. Nutr. 54, 668–673.

    PubMed  CAS  Google Scholar 

  21. Nelson, G.J., and Ackman, R.G. (1988)Lipids 23, 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  22. Chernenko, G.A., Barrowman, J.A., Kean, K.T., Herzberg, G.R., and Keough, K.M.W. (1989)Biochim. Biophys. Acta 1004, 95–102.

    PubMed  CAS  Google Scholar 

  23. Lin, D.S., and Connor, W.E. (1990)Am. J. Clin. Nutr. 51, 535–539.

    PubMed  CAS  Google Scholar 

  24. Sheppard, K., and Herzberg, G.R. (1992)Nutr. Res. 12, 1405–1418.

    Article  CAS  Google Scholar 

  25. Herzberg, G.R., Skinner, C., and Levy, R. (1992) inThird International Conference on Essential Fatty Acids and Eicosanoids, Adelaide, Australia, Poster 31.

  26. Gavino, G.R., and Gavino, V. (1991)Lipids 26, 266–270.

    PubMed  CAS  Google Scholar 

  27. Phinney, S.D., Tang, A.B., Johnson, S.B., and Holman, R.T. (1990)Lipids 25, 798–806.

    PubMed  CAS  Google Scholar 

  28. Gronn, M., Christensen, E., Hagve, T.A., and Christophersen, B.O. (1992)Biochim. Biophys. Acta 1125, 35–43.

    PubMed  CAS  Google Scholar 

  29. Zhang, Z.J., Wilcox, H.G., Elam, M.B., Castellani, L.W., and Heimberg, M. (1991)Lipids 26, 504–511.

    PubMed  CAS  Google Scholar 

  30. Corner, E.J., Bruce, V.M., and McDonald, B.E. (1990)Lipids 25, 598–601.

    PubMed  CAS  Google Scholar 

  31. Emken, E.A., Adlof, R.O., Rohwedder, W.K., and Gulley, R.M. (1993) inEssential Fatty Acids and Eicosanoids (Sinclair, A.J., and Gibson, R.A., eds.) pp. 23–25, AOCS Press, Champaign.

    Google Scholar 

  32. Sinclair, A.J., Dunstan, G.A., Naughton, J.M., Sanigorski, A.J., and O'Dea, K. (1992)Aust. J. Nutr. Dietet. 49, 77–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations


About this article

Cite this article

Hodge, J., Sanders, K. & Sinclair, A.J. Differential utilization of eicosapentaenoic acid and docosahexaenoic acid in human plasma. Lipids 28, 525–531 (1993).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: