Skip to main content
Log in

A multivariate optimization of triacylglycerol analysis by high-performance liquid chromatography

  • Method
  • Published:
Lipids

A Corrections to this article was published on 01 October 1993

Abstract

In the present study we have used statistical experimental design and multivariate optimization to formally optimize a reversed-phase high-performance liquid chromatography method for the analysis of triacylglycerol molecular species of natural oils. The optimal conditions found were, on an octadecylsilan-column, from acetonitrile/isooctane (90∶10, vol/vol) to acetonitrile/ethanol/isooctane (40∶35∶25, by vol), at a column temperature of 50°C and a flowrate of 1.5mL/min using a negative exponential gradient profile. Several examples of separations of natural seed and animal oils,i.e., soybean oil, rapeseed oil, palm oil, linseed oil, tallow and fish oil, are given. A version of the equivalent carbon number concept, utilizing the Snyder polarity index, was used to identity the molecular species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ad:

arachidic acid

CN:

carbon number

CRS:

chromatographic resolution statistic

D:

decanoic acid

ECN:

equivalent carbon number

Hd:

heptadecanoic acid

HPLC:

high-performance liquid chromatography

HRGC:

high resolution gas chromatography

L:

linoleic acid

La:

lauric acid

Ln:

linolenic acid

M:

myristic acid

Nd:

nonadecanoic acid

O:

oleic acid

P:

palmitic acid

P′:

Snyders polarity index

Pd:

pentadecanoic acid

PN:

partition number

PLS:

partial least squares correlations in latent variables

P:

palmitic acid

RP-HPLC:

reversed-phase high-performance liquid chromatography

St:

stearic acid

TAG:

triacylglycerol

UV:

ultraviolet

References

  1. Kaufmann, P., and Herslöf, B.G. (1991)Fat Sci. Technol. 93, 179–183.

    CAS  Google Scholar 

  2. Christie, W.W. (1987)HPLC and Lipids, pp. 172–176, Pergamon Press, Oxford.

    Google Scholar 

  3. Rezanka, T., and Mares, P. (1991)J. Chromatogr. 542, 145–159.

    Article  CAS  Google Scholar 

  4. Phillips, F.C., Erdahl, W.L., Schmit, J.A., and Privett, O.S. (1984)Lipids 19, 880–887.

    Article  PubMed  CAS  Google Scholar 

  5. Zeitoun, M.A.M., Neff, W.E., Selke, E., and Mounts, T.L. (1991)J. Liq. Chromatogr. 14, 2685–2698.

    CAS  Google Scholar 

  6. Palmer, A.J., and Palmer, F.J. (1989)J. Chromatogr. 465, 369–377.

    Article  PubMed  CAS  Google Scholar 

  7. Stolywho, A., Colin, H., and Guiochon, G. (1985)Anal. Chem. 57, 1342–1354.

    Article  Google Scholar 

  8. Herslöf, B., Podlaha, O., and Töregard, B. (1979)J. Am. Oil Chem. Soc. 56, 864–866.

    Google Scholar 

  9. Podlaha, O., and Töregard, B. (1982)J. High Res. Chrom. Chrom. Commun. 5, 553–558.

    Article  CAS  Google Scholar 

  10. Box, G.E.P., Hunter, W.G., and Hunter, J.S. (1978)Statistics for Experimenters, Wiley, New York.

    Google Scholar 

  11. Carlson, R. (1991)Design and Optimization in Organic Synthesis, Elsevier, Amsterdam.

    Google Scholar 

  12. Olsson, U., Kaufmann, P., and Herslöf, B.G. (1990)J. Chromatogr. 505, 385–394.

    Article  CAS  Google Scholar 

  13. Olsson, U., Kaufmann, P., and Herslöf, B.G. (1990)J. Planar Chromatogr. 3, 55–60.

    CAS  Google Scholar 

  14. Olsson, N.U., and Kaufmann, P. (1992)J. Chromatogr. 600, 257–266.

    Article  CAS  Google Scholar 

  15. Kaufmann, P., and Olsson, N.U. (1992)Proc. Contemporary Lipid Analysis, (Sweden) 2, 72–83.

    Google Scholar 

  16. Litchfield, C. (1968)Lipids 3, 170–177.

    Article  CAS  Google Scholar 

  17. European Community (EEC)Method for LLL in Olive Oil, Annex VIII of Community Regulation No. 2568/91.

  18. IUPAC Commission on Oils, Fats, and Derivatives (1991)Pure Appl. Chem. 63, 1173–1182.

    Google Scholar 

  19. Wold, H. (1982)Systems under Indirect Observation (Jöreskog, K.G., and Wold, H., eds.) pp. 307–358, North-Holland, Amsterdam.

    Google Scholar 

  20. Wold, S., Albano, C., Dunn III, W.J., Esbensen, K., Hellberg, S., Johansson, E., and Sjöström, M. (1983)Food Research and Data Analysis (Martens, H., and Russwurm, Jr., H., eds.) pp. 147–188, Applied Science Publishers, London.

    Google Scholar 

  21. Lorber, A., Wangen, L.E., and Kowalski, B.R. (1987)J. Chemometr., 1, 19–31.

    Article  CAS  Google Scholar 

  22. Kaufmann, P. (1992)Advances in Lipid Methodology (Christie, W.W., ed.), pp. 149–180, The Oily Press, Ayr.

    Google Scholar 

  23. Schlabach, T.D., and Excoffier, J.L. (1988)J. Chromatogr. 439, 173–184.

    Article  CAS  Google Scholar 

  24. Snyder, L.R. (1974)J. Chromatogr. 92, 223–230.

    Article  CAS  Google Scholar 

  25. Deffense, E. (1983)J. Am. Oil Chem. Soc. 60, 474–475.

    Google Scholar 

  26. Fiebig, H.J. (1985)Fette Seifen. Anstrichm. 87, 53–57.

    Article  CAS  Google Scholar 

  27. Litchfield, C. (1972)Analysis of Triglycerides, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02537513.

About this article

Cite this article

Bergqvist, M.H.J., Kaufmann, P. A multivariate optimization of triacylglycerol analysis by high-performance liquid chromatography. Lipids 28, 667–675 (1993). https://doi.org/10.1007/BF02536064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536064

Keywords

Navigation