Skip to main content
Log in

Dietary fat effects on hepatic lipid peroxidation and enzymes of H2O2 metabolism and NADPH Generation

  • Article
  • Published:
Lipids

Abstract

The purpose of this study was to determine the effects of dietary fat quantity and fatty acid composition on hepatic H2O2-metabolizing systems, activities of NADPH-generating enzymes and lipid peroxidation. Onemonth-old male C57BL/6J mice were fed one of six diets: (i) 5% fat, rich in 18∶2n−6 fatty acid (5% N−6); (ii) 20% fat, rich in 18∶3n−3 (N−3); (iii) 20% fat, rich in 18∶2n−6 (N−6); (iv) 20% fat, rich in 18∶1n−9 (N−9); (v) 20% fat, rich in saturated fatty acids (SAT); and (vi) 20% fat, deficient in essential fatty acids (EFAD); for 11 wk. Comparisons between animal groups receiving different fat quantities showed that activities of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) and malic enzyme (ME, EC 1.1.1.40) and the levels of conjugated dienes were significantly lower in the N−6 than in 5% N−6 group. Conversely, activities of catalase (CAT, EC 1.11.1.6) and seleniumglutathione peroxidase (SeGSHPx, EC 1.11.1.9) were higher in the N−6 than in 5% N−6 group. Among the five dietary groups receiving 20% fat but differing in fatty acid composition, CAT activity was lower in the N−9 group, SeGSHPx activity was lower in the EFAD group, and glutathione reductase (GSSGR, EC 1.6.4.2) activity was higher in the N−6 than in the N−3, N−9, SAT and EFAD groups. The EFAD group had much higher levels of total lipids and conjugated dienes, as well as activities of NADPH-generating enzymes, including G6PDH, ME and isocitrate dehydrogenase (EC 1.1.1.42), than the other four high-fat groups. The hepatic levels of malondialdehyde were not different among the five groups fed 20% fat. In the EFAD group, higher hepatic lipid content can be attributed to higher activities of NADPH-generating enzymes, and the elevation of conjugated diene levels may be related to increased oxygenation of 20∶−6 (Mead acid)via the lipoxygenase/cyclooxygenase pathway. In short, both dietary fat quantity and fatty acid composition selectively affected hepatic H2O2-metabolizing systems, activities of NADPH-generating enzymes and lipid peroxidation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CAT:

catalase (EC 1.11.1.6)

EFA:

essential fatty acid

EFAD:

essential fatty acid deficiency

G6P:

glucose-6-phosphate

G6PDH:

glucose-6-phosphate dehydrogenase (EC 1.1.1.49)

GSH:

reduced blutathione

GSSG:

oxidized glutathione

GSSGR:

glutathione reductase (EC 1.6.4.2)

ICDH:

isocitrate dehydrogenase (EC 1.1.1.42)

MDA:

malondialdehyde

ME:

malic enzyme (EC 1.1.1.40)

SAT:

saturated fatty acid(s)

SeGSHPx:

selenium-glutathione peroxidase (EC 1.11.1.9)

TBA:

2-thiobarbituric acid

References

  1. Tolbert, N.E., (1981)Annu. Rev. Biochem. 50, 133–157.

    Article  PubMed  CAS  Google Scholar 

  2. Chow, C.K. (1988) inCellular Antioxidant Defense Mechanisms Vol. II (Chow, C.K., ed.) pp. 217–237, CRC Press, Boca Raton.

    Google Scholar 

  3. Reddy, J.K., and Lalwani, N.D. (1983)Crit. Rev. Toxicol. 12, 1–58.

    PubMed  CAS  Google Scholar 

  4. Chance, B., Sies, H., and Boveris, A. (1979)Physiol. Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  5. Kirkman, H.N., and Gaetani, G.F. (1984)Proc. Natl. Acad. Sci. USA 81, 4343–4347.

    Article  PubMed  CAS  Google Scholar 

  6. Kirkman, H.N., Galiano, S., and Gaetani, G.F. (1987)J. Biol. Chem. 262, 660–666.

    PubMed  CAS  Google Scholar 

  7. Iritani, N., and Ikeda, Y. (1982)J. Nutr. 112, 2235–2239.

    PubMed  CAS  Google Scholar 

  8. Yamazaki, R.K., Shen, T., and Schade, G.B. (1987)Biochim. Biophys. Acta 920, 62–67.

    PubMed  CAS  Google Scholar 

  9. Neat, C.E., Thomassen, M.S., and Osmundsen, S. (1980)Biochem. J., 186, 369–371.

    PubMed  CAS  Google Scholar 

  10. Ishii, H., Fubutaka, N., Horie, S., and Suga, T. (1980)Biochim. Biophys. Acta 617, 1–11.

    PubMed  CAS  Google Scholar 

  11. Meydani, S.N., Shapiro, A.C., Meydani, M., Mocauley, J.B., and Blumberg, J.B. (1987)Lipids 22, 345–350.

    Article  PubMed  CAS  Google Scholar 

  12. L'abbé, M.R. Trick, K.D., and Beare-Rogers, J.L. (1991)J. Nutr. 121, 1331–1340.

    PubMed  Google Scholar 

  13. Sedlack, J., and Lindsay, R.H. (1968)Anal. Biochem. 25, 192–205.

    Article  Google Scholar 

  14. Bears, Jr., R.F., and Sizer, I.W. (1952)J. Biol. Chem. 195, 133–140.

    Google Scholar 

  15. Lawrence, R.A., and Burk, R.F. (1976)Biochem. Biophys. Res. Commun. 71, 952–958.

    Article  PubMed  CAS  Google Scholar 

  16. Cenlberg, I., and Mannervik, B. (1966)Methods Enzymol. 9, 126–131.

    Google Scholar 

  17. Langdon, R.G. (1966)Methods Enzymol. 9, 126–131.

    CAS  Google Scholar 

  18. Yeung, K.K., and Carrico, R.J. (1976)Anal. Biochem. 74, 369–375.

    Article  CAS  Google Scholar 

  19. Kornberg, A. (1955)Methods Enzymol. 1, 705–707.

    CAS  Google Scholar 

  20. Tatum, V., Changchit, C., and Chow, C.K. (1990)Lipids 25, 226–229.

    Article  CAS  Google Scholar 

  21. Recknagel, R.O., and Glende, Jr. E.A. (1984)Methods Enzymol. 105, 331–337.

    PubMed  CAS  Google Scholar 

  22. Miller, G.L. (1959)Anal. Chem. 31, 964.

    Article  CAS  Google Scholar 

  23. Chiang, S.P., Gessert, C.F., and Lowry, O.H. (1957)USAF, Texas, Res. Rep., 56–113.

  24. Gill, J.L. (1978)Design and Analysis of Experiments in the Animal and Medical Sciences, Vol. 1, Iowa State University Press, Ames.

    Google Scholar 

  25. Hennig, B., Wang, Y., Geissler, R.H., and Glauert, H.P. (1989)FASEB J. 3, A921.

    Google Scholar 

  26. Osmundsen, H., Thomassen, M.S., Hiltunen, J.K., and Berg, R.K. (1984) inPeroxisomes in Biology and Medicine (Fahimi, H.D., and Sies, H., eds.) pp. 152–165, Springer-Verlag, Berlin.

    Google Scholar 

  27. Stark, M.J., Thompson, B., and Frenkel, R. (1975)Arch. Biochem. Biophys. 166, 174–180.

    Article  PubMed  CAS  Google Scholar 

  28. Prasad, M.R., and Cinti, D.L. (1986)Arch. Biochem. Biophys. 248, 479–488.

    Article  PubMed  CAS  Google Scholar 

  29. Platt, D.S., and Cockrill, B.L. (1966)Biochem. Pharmacol. 15, 927–935.

    Article  PubMed  CAS  Google Scholar 

  30. Zakin, D., Paradini, R.S., and Herman, R.H. (1970)Biochem. Pharmacol. 19, 305–310.

    Article  Google Scholar 

  31. Zelewski, M., and Swierczynski, J. (1983)Biochim. Biophys. Acta 758, 152–157.

    PubMed  CAS  Google Scholar 

  32. Yugari, Y., and Matsuda, T. (1967)J. Biochem. 61, 541–549.

    PubMed  CAS  Google Scholar 

  33. Fulco, A.J., and Mead, J.F. (1959)J. Biol. Chem. 234, 1411–1416.

    PubMed  CAS  Google Scholar 

  34. Antonenkov, V.D. (1989)Eur. J. Biochem. 183, 75–82.

    Article  PubMed  CAS  Google Scholar 

  35. Banni, S., Corongiu, F.P., Dessi, M.A., Iannone, A., Lombardi, B., Tomasi, A., and Vannini, V. (1989)Free Rad. Res. Commun. 7, 233–240.

    CAS  Google Scholar 

  36. Elliott, W.J., Morrison, A.R., Sprecher, H., and Needleman, P., (1986)J. Biol. Chem. 261, 6719–6724.

    PubMed  CAS  Google Scholar 

  37. Jakschik, B.A., Morrison, A.R., and Sprecher, H. (1983)J. Biol. Chem. 258, 12797–12800.

    PubMed  CAS  Google Scholar 

  38. Smith, C.V. and Anderson, R.E. (1987)Free Rad. Biol. Med. 3, 341–344.

    PubMed  CAS  Google Scholar 

  39. Porter, N.A. (1984)Methods Enzymol. 105, 273–282.

    Article  PubMed  CAS  Google Scholar 

  40. Geol, S.K., Lalwani, N.D., and Reddy, J.K. (1986)Cancer Res. 46, 1324–1330.

    Google Scholar 

  41. Lake, B.G., Kozlen, S.L., Evans, J.G., Gray, T.J.B., Young, P.J., and Gangollo, S.D. (1987)Toxicology 44, 213–228.

    Article  PubMed  CAS  Google Scholar 

  42. Conway, J.G., Tomaszewski, K.E., Olson, M.J., Cattley, R.C., Marsman, D.S., and Popp, J.A. (1989)Carcinogenesis 10, 513–519.

    PubMed  CAS  Google Scholar 

  43. Sladek, N.E., Manthey, C.L., Maki, P.A., Zhang, Z., and Landkamer, G.J. (1989)Drug Metab. Rev. 20, 697–720.

    PubMed  CAS  Google Scholar 

  44. Kramar, R., and Kremser, K. (1984)Enzyme 31, 17–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chen, LC., Boissonneault, G., Hayek, M.G. et al. Dietary fat effects on hepatic lipid peroxidation and enzymes of H2O2 metabolism and NADPH Generation. Lipids 28, 657–662 (1993). https://doi.org/10.1007/BF02536062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536062

Keywords

Navigation