Skip to main content
Log in

Phospholipid molecular species from human placenta lipids

  • Article
  • Published:
Lipids

Abstract

The phospholipid molecular species from a large-scale preparation of human placenta lipids were analyzed. The major placental phospholipids were choline glycerophospholipids (CPL) (53.2 wt%), sphingomyelin (21.7 wt%) and ethanolamine glycerophospholipids (EPL) (14.6 wt%). 1,2-Diacyl-glycerophosphocholine was the most abundant subclass of CPL (91.7 mol%), while EPL contained 1,2-diacyl (54.6 mol%) and 1-alk-1′-enyl-2-acyl (43.8 mol%) subclasses. The level of polyunsaturated fatty acids (PUFA) in total phospholipids was remarkably constant (38.4–39.9 mol%) within all placental batches tested. The long-chain PUFA, mainly 20∶4n−6 and 22∶6n−3 of the n−6 and n−3 series, respectively, were found in high proportion in all phospholipid classes, especially in EPL (46.7 mol%) and in inositol glycerophospholipids (IPL) (39.9 mol%). CPL and serine glycerophospholipids were much richer in 18∶1n−9 and 18∶2n−6. High levels of molecular species with arachidonic acid in thesn-2 position were found particularly in 1-alk-1′-enyl-2-acyl-glycerophospho-ethanolamine (with 24.0 mol% 16∶0 and 22.0 mol% 18∶0 insn-1 position) and in 1,2-diacyl glycerophosphoinositol with 42.6 mol% 18∶0 insn-1 position. EPL subclasses were rich in 22∶6n−3, which occurs mainly as 16∶0/22∶6n−3 (11.7 mol%) in the polasmalogen form and as 18∶0/22∶6n−3, 16∶0/22∶6n−3 and 18∶1/22∶6n−3 in the diacyl forms. Based on their availability and composition, placental phospholipids could be of interest, for example, for supplementing artificial milk preparations with n−3 and n−6 long-chain PUFA for newborn infants with insufficiently developed 18∶2n−6 and 18∶3n−3 desaturation/elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHT:

butylated hydroxytoluene

CPL:

choline glycerophospholipids

EPL:

ethanolamine glycerophospholipids

GLC:

gas-liquid chromatography

GPC:

glycerophosphocholines

GPE:

glycerophosphoethanolamines

GPI:

glycerophosphoinositols

GPS:

glycerophosphoserines

HPLC:

high-performance liquid chromatography

IPL:

inositol glycerophospholipids

PUFA:

polyunsaturated fatty acids

SPL:

serine glycerophospholipids

TLC:

thinlayer chromatography

References

  1. Sinclair, H. (1990)Biochem. Soc. Trans. 18, 756–761.

    PubMed  CAS  Google Scholar 

  2. Burr, G.O., and Burr, M.M. (1930)J. Biol. Chem. 86, 587–621.

    CAS  Google Scholar 

  3. Holman, R.T. (1968)Prog. Chem. Fats Lipids 9, 275–348.

    Article  Google Scholar 

  4. Kinsella, J.E. (1991)Adv. Food Nutr. Res. 35, 1–184.

    Article  PubMed  CAS  Google Scholar 

  5. Bazan, N.G. (1990) inNutrition and the Brain (Wurtman, R.J., and Wurtman, J.J., eds.) Vol. 8, pp. 1–24, Raven Press, New York.

    Google Scholar 

  6. Fliesler, S.J., and Anderson, R.E. (1983)Prog. Lipid Res. 22, 79–131.

    Article  PubMed  CAS  Google Scholar 

  7. O'Brien, J.S., and Sampson, E.L. (1965)J. Lipid Res. 22, 545–551.

    Google Scholar 

  8. Neuringer, M., Connor, W., Lin, D., Barsted, L., and Luck, S. (1986)Proc. Natl. Acad. Sci. USA 83, 4021–4025.

    Article  PubMed  CAS  Google Scholar 

  9. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, G.W. (1980)Early Hum Dev. 4, 131–138.

    Article  PubMed  CAS  Google Scholar 

  10. Uauy, R.D., Birch, D.G., Birch, E.E., Tyson, J.E., and Hoffman, D.R. (1990)Pediatr. Res. 28, 485–492.

    PubMed  CAS  Google Scholar 

  11. Gibson, R.A., and Kneebone, G.M. (1981)Amer. J. Clin. Nutr. 34, 252–257.

    PubMed  CAS  Google Scholar 

  12. Uauy, R., Treen, M., and Hoffman, D.R. (1989)Seminars in Perinatology 13, 118–130.

    PubMed  CAS  Google Scholar 

  13. Kolarovic, L., and Fournier, N.C. (1986)Anal. Biochem. 156, 244–250.

    Article  PubMed  CAS  Google Scholar 

  14. Hadjiagapiou, C., and Spector, A.A. (1987)Arch. Biochem. Biophys. 253, 1–12.

    Article  PubMed  CAS  Google Scholar 

  15. Juanéda, P., Rocquelin, G., and Astorg, P.O. (1990)Lipids 25, 756–759.

    PubMed  Google Scholar 

  16. Takamura, H., Narita, H., Urade, R., and Kito, M. (1986)Lipids 21, 356–361.

    PubMed  CAS  Google Scholar 

  17. Croset, M., Bayon, Y., and Lagarde, M. (1992)Biochem. J. 281, 309–316.

    PubMed  CAS  Google Scholar 

  18. Patton, G.M., Fasulo, J.M., and Robins, S.J. (1982)J. Lipid. Res. 23, 190–196.

    PubMed  CAS  Google Scholar 

  19. Patton, G.M. (1990)J. Nutr. Biochem. 1, 548–556.

    Google Scholar 

  20. Morrison, W.R., and Smith, L.M. (1964)J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  21. Chirouze, V., Entressangles, B., and Helme, J.P. (1987)Rev. Franç. Corps Gras 34, 275–280.

    CAS  Google Scholar 

  22. Robertson, A.F., and Sprecher, H. (1968)Acta Pediatr. Scand. 183, 1–18.

    Google Scholar 

  23. Nelson, G. (1971)Amer. J. Obstret. Gynec. 110, 352–354.

    CAS  Google Scholar 

  24. Percy, P., Vibergsson, G., Percy, A., Mansson, J.E., Wenergren, M., and Svennerholm, L. (1991)Biochim. Biophys. Acta 1084, 173–177.

    PubMed  CAS  Google Scholar 

  25. MacDonald, J.I.S., and Sprecher, H. (1991)Biochim. Biophys. Acta 1084, 105–121.

    PubMed  CAS  Google Scholar 

  26. Takamura, H., Kasai, H., Arita, H., and Kito, M. (1990)J. Lipid Res. 31, 709–717.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bayon, Y., Croset, M., Chirouze, V. et al. Phospholipid molecular species from human placenta lipids. Lipids 28, 631–636 (1993). https://doi.org/10.1007/BF02536058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536058

Keywords

Navigation