Skip to main content
Log in

Myogenic differentiation of the muscle clonal cell line BC3H-1 is accompanied by changes in its lipid composition

  • Article
  • Published:
Lipids

Abstract

Phospholipid and neutral lipid composition was studied in the course of myogenic differentiation of the clonal cell line BC3H-1. Total phospholipid content increased during differentiation, predominantly in the major classes of choline and ethanolamine glycerophospholipids. The contents of other lipids, such as triacylglycerols, diminished more than 50% during this period. The content and distribution of fatty acids also underwent marked differentiation-dependent changes. The polyunsaturated (tetrapenta- and hexaenoic) fatty acid species of several phospholipid classes diminished during differentiation, especially those in choline, serine and inositol glycerophospholipids. Most noticeable were the changes in phosphatidylserine; long-chain fatty acids having 20 to 22 carbon atoms and 4 to 6 double bonds decreased from about 30 to about 10 mol%. Although increased levels of saturation in other phospholipid fatty acyl chains appear to accompany the myogenic changes of BC3H-1 cells, some unsaturated fatty acids, such as oleic acid (18∶1), increased by as much as 80% during the same period, suggesting the activation of a Δ9 desaturase. Sphingomyelin contained only saturated and monoenoic fatty acids and exhibited a four- to five-fold decrease in its content of monoenoic acyl groups. Diacylglycerols became enriched in arachidonate and docosahexaenoate. The amount of cholesterol and its esters increased slightly during differentiation of BC3H-1 cells. The data show that several metabolic pathways change during myogenic differentiation of the BC3H-1 clonal cell line, particularlyde novo biosynthetic pathways, elongation/desaturation reactions, and acyl chain turnover. As a consequence of this, the lipid composition of the myoblast form of the BC3H-1 cell, in which the nicotinic acetylcholine receptor and other cell surface receptors are expressed, is thus different from that of the nondifferentiated cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AChR:

acetylcholine receptor

DMA:

dimethylacetals

FFA:

free fatty acid

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

PS+CDP-DAG:

phosphatidylserine plus cytidine diphosphate-diacylglycerol

PPI:

polyphosphoinositides

Sph:

sphingomyelin

TAG:

triacylglycerol

TLC:

thin-layer chromatography

References

  1. Changeux, J.P. (1990)Trends Pharmacol. Sci. 11, 485–492.

    Article  PubMed  CAS  Google Scholar 

  2. Barrantes, F.J. (1986) inIon Channels in Cells and Model System. (Latorre, R., ed.) pp. 385–400, Plenum Publishing Co., New York.

    Google Scholar 

  3. Barrantes, F.J. (1989)Crit. Rev. Biochem. Molec. Biol. 24, 437–478.

    CAS  Google Scholar 

  4. Criado, M., Eibl, H., and Barrantes, F.J. (1982)Biochemistry 21, 3622–3629.

    Article  PubMed  CAS  Google Scholar 

  5. Criado, M., Eibl, H., and Barrantes, F.J. (1984)J. Biol. Chem. 259, 9188–9198.

    PubMed  CAS  Google Scholar 

  6. Jones, O.T., Eubanks, J.H., Earnest, J.P., and McNamee, M.G. (1988)Biochemistry 27, 3733–3742.

    Article  PubMed  CAS  Google Scholar 

  7. Schubert, D., Harris, A., Devine, C.E., and Heinemann, S. (1974)J. Cell. Biol. 61, 398–413.

    Article  PubMed  CAS  Google Scholar 

  8. Patrick, J.J., McMillan, H., Wolfson, H., and O'Brien, J.C. (1977)J. Biol. Chem. 252, 2143–2153.

    PubMed  CAS  Google Scholar 

  9. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  10. Uma, S., and Ramakrishnan, C.V. (1984)J. Neurochem. 40, 914–916.

    Article  Google Scholar 

  11. Hauser, G., and Eichberg, J. (1973)Biochim. Biophys. Acta 326, 201–209.

    PubMed  CAS  Google Scholar 

  12. Rouser, G.G., Fleischer, S., and Yamamoto, A. (1970)Lipids 5, 494–496.

    Article  PubMed  CAS  Google Scholar 

  13. Pediconi, M.F., Donoso, P., Hidalgo, C., and Barrantes, F.J. (1987)Biochim. Biophys. Acta 921, 398–404.

    PubMed  CAS  Google Scholar 

  14. Shaik, N.A., and Palmer, F.B.S.C. (1977)J. Neurochem. 28, 395–402.

    Article  Google Scholar 

  15. Morrison, W.R., and Smith, L.M. (1964)J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  17. Spizz, G., Roman, D., Strauss, A., and Olson, E.N. (1986)J. Biol. Chem. 251, 9483–9488.

    Google Scholar 

  18. del Buono, B.J., Williamson, P.L., and Shegel, R.A. (1986)J. Cell Physiol. 126, 379–388.

    Article  PubMed  Google Scholar 

  19. Calorini, L., Fallani, A., Tombaccini, D., Barletta, E., Mugnai, G., Di Renzo, M.F., Camoglio, P.M., and Ruggieri, S. (1989)Lipids 24, 685–690.

    PubMed  CAS  Google Scholar 

  20. Standaert, M.L., Schimmel, S.D., and Pollet, R.J. (1984)J. Biol. Chem. 259, 2337–2345.

    PubMed  CAS  Google Scholar 

  21. McGee, Jr., R.J. (1981)Biochim. Biophys. Acta 663, 314–328.

    PubMed  CAS  Google Scholar 

  22. Cook, H.W., and Spence, M.W. (1987)Biochim. Biophys. Acta 918, 212–229.

    Google Scholar 

  23. Mountford, C.E., Wright, L.C., Holmes, K.T., Mackinnon, W.B., Gregory, P., and Fox, R.M. (1984)Science 216, 1415–1418.

    Article  Google Scholar 

  24. Rotstein, N.P., Arias, H.R., Barrantes, F.J., and Aveldaño, M.I. (1987)J. Neurochem. 49, 1333–1340.

    Article  PubMed  CAS  Google Scholar 

  25. Sauro, V.S., and Strickland, K.P. (1987)Biochem. J. 244, 743–748.

    PubMed  CAS  Google Scholar 

  26. Sauro, V.S., Klamut, H.J., Lin, C-H., and Strickland, K.P. (1985)Biochem. J. 227, 583–589.

    PubMed  CAS  Google Scholar 

  27. Yavin, E., Yavin, Z., and Menkes, J.H. (1975)J. Neurochem. 24, 71–77.

    Article  PubMed  CAS  Google Scholar 

  28. Cook, H.W. (1985) inBiochemistry of Lipids and Membranes (Vance, D.E., and Vance, J.E., eds.) pp. 181–212, The Benjamins/Cummings Publishing Co. Inc., Menlo Park.

    Google Scholar 

  29. Kort, W.J., Weijma, I.M., Bijma, A.M., van Schalkwijk, W.P., Vergroesen, A.J., and Westbroek, D.L. (1987)J. Natl. Cancer Inst. 79, 593–600.

    PubMed  CAS  Google Scholar 

  30. Chow, S.C., Sisfontes, L., Björkhem, I., and Jondal, M. (1989)Lipids 24, 700–704.

    PubMed  CAS  Google Scholar 

  31. McMurchie, E.J. (1988) inPhysiological Regulation of Fluidity (Aloia, R.C., Cartain, C.C., and Gordon, L.M., eds.) pp. 189–237, Alan Liss, New York.

    Google Scholar 

  32. Fong, T.M., and McNamee, M.G. (1986)Biochemistry 25, 830–835.

    Article  PubMed  CAS  Google Scholar 

  33. Bouzat, C.B., and Barrantes, F.J. (1992)Receptors and Channels, in press.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Pediconi, M.F., Politi, L.E., Bouzat, C.B. et al. Myogenic differentiation of the muscle clonal cell line BC3H-1 is accompanied by changes in its lipid composition. Lipids 27, 669–675 (1992). https://doi.org/10.1007/BF02536022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536022

Keywords

Navigation