Skip to main content
Log in

Lipid metabolic interrelationships and phospholipase activity in gustatory epithelium ofictalurus punctatus in vitro

  • Published:
Lipids

Abstract

The catfish,Ictalurus punctatus, is an important model for studying the biochemical mechanisms of taste at the peripheral level. The type, amount and metabolic activity of the lipids within this tissue play important roles in taste transduction by forming the matrix in which the receptors for taste stimuli are imbedded and by acting as precursors to second messengers. The metabolic interconversions that occur among the lipids on the taste organ (barbels) of this animal are reported here. When sodium [32P]phosphate was incubated with minced pieces of epithelium from the taste organ ofI. punctatus, phospholipids became labeled. Maximal incorporation occurred near 20 min for lysophosphatidylcholines (LPC),phosphatidylcholines (PC) and phosphatidylinositols (PI). The phosphatidylethanolamines (PE) and phosphatidylserines (PS) became labeled more slowly. The label in LPC and PC declined from 20 min to 120 min, while that of the other fractions increased or was stable over the 20–120 min time period. Upon addition of 1,2-di-[1′-14C]palmitoyl-sn-glycero-3-phosphocholine to the medium,14C was found within minutes in all of the phospholipids assayed. The amount of label incorporated increased with time, with maximum labeling for all phospholipids occurring at 15 min. However,14C appeared predominantly first (by 5 min) in a neutral lipid fraction (fraction AG, consisting of free fatty acids, mono- and diglycerides, triglycerides and methyl esters), then declined rapidly as the phospholipids gradually incorporated more label. Within minutes of addition of 1-[1′-14C]palmitoyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine) the14C-label was detected in the neutral lipid fraction AG, then in the PC fraction, and later in the other phospholipids. The PC fraction was maximally labeled by 40 min.

Using the appropriate radiolabeled substrates, lysophosphatidylcholine phospholipase A1 and phosphatidylcholine phospholipase D activities were detected in this tissue. Very low activity of a phosphatidylcholine phospholipase A2 was observed. The experiments indicate that there are active and rapid exchange, degradation, synthesis and scavenger pathways of phospholipids in the taste organ of this animal, and suggest that phospholipases A1 and D-type activities are primarily responsible for the rapid breakdown of LPC and PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMSO:

dimethyl sulfoxide

DPM:

disintegration per minute

HPLC:

high performance liquid chromatography

LPC:

lysophosphatidylcholine

LPC-PLA1:

lysophosphati-dylcholine-phospholipase A1

PA:

phosphatidic acid

PC:

phosphatidylcholine(s)

PC-PLD:

phosphatidylcholine-phospholipase D

PE:

phosphatidylethanolamine(s)

PI:

phosphatidylinositol(s)

PS:

phosphatidylserine(s)

TCA:

trichloroacetic acid

and TLC:

thinlayer chromatography

References

  1. Kinnamon, S.C. (1988)Trends Neurosci. 11, 491–496.

    Article  PubMed  CAS  Google Scholar 

  2. Brand, J.G., Teeter, J.H., Cagan, R.H., and Kare, M.R. (eds.) (1989)Chemical Senses 1: Receptor Events and Transduction in Taste and Olfaction, Marcel Dekker, Inc., New York.

    Google Scholar 

  3. Teeter, J.H., and Brand, J.G. (1987) inNeurobiology of Taste and Smell (Finger, T.E., and Silver, W.L., eds.), pp. 299–329, John Wiley & Sons, New York.

    Google Scholar 

  4. Caprio, J. (1988) inSensory Biology of Aquatic Animals (Atema, J., Fay, R.R., Popper, A.N., and Tavolga, W.N., eds.), pp. 313–338, Springer-Verlag, New York.

    Google Scholar 

  5. Krueger, J.M., and Cagan, R.H. (1976)J. Biol. Chem. 251, 88–97.

    PubMed  CAS  Google Scholar 

  6. Cagan, R.H. (1986)Comp. Biochem. Physiol., 85A, 355–358.

    Article  CAS  Google Scholar 

  7. Brand, J.G., Bryant, B.P., Cagan, R.H., and Kalinoski, D.L. (1987)Brain Res. 416, 119–128.

    Article  PubMed  CAS  Google Scholar 

  8. Kalinoski, D.L., Bryant, B.P., Shaulsky, G., Brand, J.G., and Harpaz, S. (1989)Brain Res. 488, 163–173.

    Article  PubMed  CAS  Google Scholar 

  9. Teeter, J.H., and Brand, J.G. (1987)Soc. Neurosci. Abstr. 13, 361.

    Google Scholar 

  10. Teeter, J.H., Brand, J.G., Kalinoski, D.L., and Bryant, B.P. (1988)Chem. Senses 13, 740.

    Google Scholar 

  11. Rabinowitz, J.L., Brand, J.G., and Bayley, D.L. (1982)Lipids 17, 950–955.

    PubMed  CAS  Google Scholar 

  12. Brand, J.G., Rabinowitz, J.L., and Bayley, D.L. (1984)Chem. Senses 9, 219–228.

    CAS  Google Scholar 

  13. Rabinowitz, J.L., Brand, J.G., Baker, D., Huque, T., and Bayley, D. (1986)Int. J. Biochem. 18, 543–548.

    Article  PubMed  CAS  Google Scholar 

  14. Huque, T., Brand, J.G., Rabinowitz, J.L., and Gavarron, F.F. (1987)Comp. Biochem. Physiol. 86B, 135–139.

    CAS  Google Scholar 

  15. Brand, J.G., Rabinowitz, J.L., Huque, T., and Bayley, D.L. (1989)Experientia 45, 77–81.

    Article  PubMed  CAS  Google Scholar 

  16. Huque, T., Brand, J.G., Rabinowitz, J.L., and Bayley, D.L. (1987)Chem. Senses 12, 666–667.

    Google Scholar 

  17. Huque, T., and Brand, J.G. (1988)Chem. Senses 13 698.

    Google Scholar 

  18. Morrison, W.R., and Smith, L.M. (1964)J. Lipid Res. 5, 600–609.

    PubMed  CAS  Google Scholar 

  19. Blank, M.L., Schmit, J.A., and Privett, O.S. (1964)J. Am. Oil Chem. Soc. 41, 371–376.

    CAS  Google Scholar 

  20. Chen, P.S. Jr., Toribara, T.Y., and Warner, H. (1956)Analyt. Chem. 28, 1756–1758.

    Article  CAS  Google Scholar 

  21. Gornall, A.T., Bardawill, G.J., and David, M.M. (1949)J. Biol. Chem. 177, 751–766.

    Google Scholar 

  22. Jelsema, C.L. (1987)J. Biol. Chem. 262, 163–168.

    PubMed  CAS  Google Scholar 

  23. Hirata, F., and Axelrod, J. (1978)Proc. Natl. Acad. Sci. USA 75, 2348–2352.

    Article  PubMed  CAS  Google Scholar 

  24. Bjerre, K.S. (1973)Biochim. Biophys. Acta 296, 549–562.

    Google Scholar 

  25. Ando, H.Y., Gazdick, G.G.G., Sugita, E.T., and Schnaare, R.L. (1988)Lipids 23, 1073–1078.

    Article  PubMed  CAS  Google Scholar 

  26. Seidner, S.R., Jobe, A.H., Ikegami, M., Pettenazzo, A., Priestley, A., and Ruffini, L. (1988)Biochim. Biophys. Acta 961, 328–336.

    PubMed  CAS  Google Scholar 

  27. Rustenbeck, I., and Lenzen, S. (1989)Arch. Pharmacol. 339, 37–41.

    Article  CAS  Google Scholar 

  28. Loffelholtz, K. (1989)Biochem. Pharmacol. 38, 1543–1549.

    Article  Google Scholar 

  29. Kim, D., and Clapham, D.E. (1989)Science 244, 1174–1176.

    Article  PubMed  CAS  Google Scholar 

  30. Ordway, R.W., Walsh, J.V., and Singer, J.J. (1989)Science 244, 1176–1179.

    Article  PubMed  CAS  Google Scholar 

  31. Yeagle, P. (1987)The Membranes of Cells pp. 240–241. Academic Press, Inc., San Diego, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Rabinowitz, J.L., Huque, T., Brand, J.G. et al. Lipid metabolic interrelationships and phospholipase activity in gustatory epithelium ofictalurus punctatus in vitro . Lipids 25, 181–186 (1990). https://doi.org/10.1007/BF02535745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535745

Keywords

Navigation